supreethrao commited on
Commit
5fe64b1
1 Parent(s): 284b48d

Model save

Browse files
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ datasets:
10
+ - conll2003
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ widget:
16
+ - text: New Zealand Prime Minister Jim Bolger, emerging from coalition talks with
17
+ the nationalist New Zealand First party on Friday afternoon, said National and
18
+ NZ First would meet again on Sunday.
19
+ - text: A police spokesman said two youths believed to be supporters of President
20
+ Nelson Mandela's African National Congress (ANC) had been killed when unknown
21
+ gunmen opened fire at the rural settlement of Izingolweni on KwaZulu-Natal province's
22
+ south coast on Thursday night.
23
+ - text: Japan's Economic Planning Agency has not changed its view that the economy
24
+ is gradually recovering, despite relatively weak gross domestic product figures
25
+ released on Tuesday, EPA Vice Minister Shimpei Nukaya told reporters on Friday.
26
+ - text: Cuttitta, who trainer George Coste said was certain to play on Saturday week,
27
+ was named in a 21-man squad lacking only two of the team beaten 54-21 by England
28
+ at Twickenham last month.
29
+ - text: Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6
30
+ pipeline_tag: token-classification
31
+ model-index:
32
+ - name: SpanMarker
33
+ results:
34
+ - task:
35
+ type: token-classification
36
+ name: Named Entity Recognition
37
+ dataset:
38
+ name: Unknown
39
+ type: conll2003
40
+ split: test
41
+ metrics:
42
+ - type: f1
43
+ value: 0.9209646189051223
44
+ name: F1
45
+ - type: precision
46
+ value: 0.9156457822891144
47
+ name: Precision
48
+ - type: recall
49
+ value: 0.9263456090651558
50
+ name: Recall
51
+ ---
52
+
53
+ # SpanMarker
54
+
55
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SpanMarker
61
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
62
+ - **Maximum Sequence Length:** 256 tokens
63
+ - **Maximum Entity Length:** 8 words
64
+ - **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
71
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
72
+
73
+ ### Model Labels
74
+ | Label | Examples |
75
+ |:------|:--------------------------------------------------------------|
76
+ | LOC | "BRUSSELS", "Britain", "Germany" |
77
+ | MISC | "British", "EU-wide", "German" |
78
+ | ORG | "European Union", "EU", "European Commission" |
79
+ | PER | "Nikolaus van der Pas", "Peter Blackburn", "Werner Zwingmann" |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Precision | Recall | F1 |
85
+ |:--------|:----------|:-------|:-------|
86
+ | **all** | 0.9156 | 0.9263 | 0.9210 |
87
+ | LOC | 0.9327 | 0.9394 | 0.9361 |
88
+ | MISC | 0.7973 | 0.8462 | 0.8210 |
89
+ | ORG | 0.8987 | 0.9133 | 0.9059 |
90
+ | PER | 0.9706 | 0.9610 | 0.9658 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ ```python
97
+ from span_marker import SpanMarkerModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
101
+ # Run inference
102
+ entities = model.predict("Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6")
103
+ ```
104
+
105
+ ### Downstream Use
106
+ You can finetune this model on your own dataset.
107
+
108
+ <details><summary>Click to expand</summary>
109
+
110
+ ```python
111
+ from span_marker import SpanMarkerModel, Trainer
112
+
113
+ # Download from the 🤗 Hub
114
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
115
+
116
+ # Specify a Dataset with "tokens" and "ner_tag" columns
117
+ dataset = load_dataset("conll2003") # For example CoNLL2003
118
+
119
+ # Initialize a Trainer using the pretrained model & dataset
120
+ trainer = Trainer(
121
+ model=model,
122
+ train_dataset=dataset["train"],
123
+ eval_dataset=dataset["validation"],
124
+ )
125
+ trainer.train()
126
+ trainer.save_model("supreethrao/instructNER_conll03_xl-finetuned")
127
+ ```
128
+ </details>
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Set Metrics
151
+ | Training set | Min | Median | Max |
152
+ |:----------------------|:----|:--------|:----|
153
+ | Sentence length | 1 | 14.5019 | 113 |
154
+ | Entities per sentence | 0 | 1.6736 | 20 |
155
+
156
+ ### Training Hyperparameters
157
+ - learning_rate: 5e-05
158
+ - train_batch_size: 16
159
+ - eval_batch_size: 16
160
+ - seed: 42
161
+ - distributed_type: multi-GPU
162
+ - num_devices: 2
163
+ - total_train_batch_size: 32
164
+ - total_eval_batch_size: 32
165
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
166
+ - lr_scheduler_type: linear
167
+ - lr_scheduler_warmup_ratio: 0.1
168
+ - num_epochs: 3
169
+ - mixed_precision_training: Native AMP
170
+
171
+ ### Framework Versions
172
+ - Python: 3.10.13
173
+ - SpanMarker: 1.5.0
174
+ - Transformers: 4.35.2
175
+ - PyTorch: 2.1.1
176
+ - Datasets: 2.15.0
177
+ - Tokenizers: 0.15.0
178
+
179
+ ## Citation
180
+
181
+ ### BibTeX
182
+ ```
183
+ @software{Aarsen_SpanMarker,
184
+ author = {Aarsen, Tom},
185
+ license = {Apache-2.0},
186
+ title = {{SpanMarker for Named Entity Recognition}},
187
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
188
+ }
189
+ ```
190
+
191
+ <!--
192
+ ## Glossary
193
+
194
+ *Clearly define terms in order to be accessible across audiences.*
195
+ -->
196
+
197
+ <!--
198
+ ## Model Card Authors
199
+
200
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
201
+ -->
202
+
203
+ <!--
204
+ ## Model Card Contact
205
+
206
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
207
+ -->
all_results.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_LOC": {
4
+ "f1": 0.9360812425328554,
5
+ "number": 1668,
6
+ "precision": 0.9327380952380953,
7
+ "recall": 0.9394484412470024
8
+ },
9
+ "test_MISC": {
10
+ "f1": 0.8210089841050449,
11
+ "number": 702,
12
+ "precision": 0.7973154362416107,
13
+ "recall": 0.8461538461538461
14
+ },
15
+ "test_ORG": {
16
+ "f1": 0.9059420722603764,
17
+ "number": 1661,
18
+ "precision": 0.898696682464455,
19
+ "recall": 0.9133052378085491
20
+ },
21
+ "test_PER": {
22
+ "f1": 0.9658172778123058,
23
+ "number": 1617,
24
+ "precision": 0.9706433479075578,
25
+ "recall": 0.961038961038961
26
+ },
27
+ "test_loss": 0.02015703357756138,
28
+ "test_overall_accuracy": 0.9824701195219123,
29
+ "test_overall_f1": 0.9209646189051223,
30
+ "test_overall_precision": 0.9156457822891144,
31
+ "test_overall_recall": 0.9263456090651558,
32
+ "test_runtime": 15.7711,
33
+ "test_samples_per_second": 236.572,
34
+ "test_steps_per_second": 7.419
35
+ }
final_checkpoint/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ datasets:
10
+ - conll2003
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ widget:
16
+ - text: New Zealand Prime Minister Jim Bolger, emerging from coalition talks with
17
+ the nationalist New Zealand First party on Friday afternoon, said National and
18
+ NZ First would meet again on Sunday.
19
+ - text: A police spokesman said two youths believed to be supporters of President
20
+ Nelson Mandela's African National Congress (ANC) had been killed when unknown
21
+ gunmen opened fire at the rural settlement of Izingolweni on KwaZulu-Natal province's
22
+ south coast on Thursday night.
23
+ - text: Japan's Economic Planning Agency has not changed its view that the economy
24
+ is gradually recovering, despite relatively weak gross domestic product figures
25
+ released on Tuesday, EPA Vice Minister Shimpei Nukaya told reporters on Friday.
26
+ - text: Cuttitta, who trainer George Coste said was certain to play on Saturday week,
27
+ was named in a 21-man squad lacking only two of the team beaten 54-21 by England
28
+ at Twickenham last month.
29
+ - text: Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6
30
+ pipeline_tag: token-classification
31
+ model-index:
32
+ - name: SpanMarker
33
+ results:
34
+ - task:
35
+ type: token-classification
36
+ name: Named Entity Recognition
37
+ dataset:
38
+ name: Unknown
39
+ type: conll2003
40
+ split: test
41
+ metrics:
42
+ - type: f1
43
+ value: 0.9209646189051223
44
+ name: F1
45
+ - type: precision
46
+ value: 0.9156457822891144
47
+ name: Precision
48
+ - type: recall
49
+ value: 0.9263456090651558
50
+ name: Recall
51
+ ---
52
+
53
+ # SpanMarker
54
+
55
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SpanMarker
61
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
62
+ - **Maximum Sequence Length:** 256 tokens
63
+ - **Maximum Entity Length:** 8 words
64
+ - **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
71
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
72
+
73
+ ### Model Labels
74
+ | Label | Examples |
75
+ |:------|:--------------------------------------------------------------|
76
+ | LOC | "BRUSSELS", "Britain", "Germany" |
77
+ | MISC | "British", "EU-wide", "German" |
78
+ | ORG | "European Union", "EU", "European Commission" |
79
+ | PER | "Nikolaus van der Pas", "Peter Blackburn", "Werner Zwingmann" |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Precision | Recall | F1 |
85
+ |:--------|:----------|:-------|:-------|
86
+ | **all** | 0.9156 | 0.9263 | 0.9210 |
87
+ | LOC | 0.9327 | 0.9394 | 0.9361 |
88
+ | MISC | 0.7973 | 0.8462 | 0.8210 |
89
+ | ORG | 0.8987 | 0.9133 | 0.9059 |
90
+ | PER | 0.9706 | 0.9610 | 0.9658 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ ```python
97
+ from span_marker import SpanMarkerModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
101
+ # Run inference
102
+ entities = model.predict("Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6")
103
+ ```
104
+
105
+ ### Downstream Use
106
+ You can finetune this model on your own dataset.
107
+
108
+ <details><summary>Click to expand</summary>
109
+
110
+ ```python
111
+ from span_marker import SpanMarkerModel, Trainer
112
+
113
+ # Download from the 🤗 Hub
114
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
115
+
116
+ # Specify a Dataset with "tokens" and "ner_tag" columns
117
+ dataset = load_dataset("conll2003") # For example CoNLL2003
118
+
119
+ # Initialize a Trainer using the pretrained model & dataset
120
+ trainer = Trainer(
121
+ model=model,
122
+ train_dataset=dataset["train"],
123
+ eval_dataset=dataset["validation"],
124
+ )
125
+ trainer.train()
126
+ trainer.save_model("supreethrao/instructNER_conll03_xl-finetuned")
127
+ ```
128
+ </details>
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Set Metrics
151
+ | Training set | Min | Median | Max |
152
+ |:----------------------|:----|:--------|:----|
153
+ | Sentence length | 1 | 14.5019 | 113 |
154
+ | Entities per sentence | 0 | 1.6736 | 20 |
155
+
156
+ ### Training Hyperparameters
157
+ - learning_rate: 5e-05
158
+ - train_batch_size: 16
159
+ - eval_batch_size: 16
160
+ - seed: 42
161
+ - distributed_type: multi-GPU
162
+ - num_devices: 2
163
+ - total_train_batch_size: 32
164
+ - total_eval_batch_size: 32
165
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
166
+ - lr_scheduler_type: linear
167
+ - lr_scheduler_warmup_ratio: 0.1
168
+ - num_epochs: 3
169
+ - mixed_precision_training: Native AMP
170
+
171
+ ### Framework Versions
172
+ - Python: 3.10.13
173
+ - SpanMarker: 1.5.0
174
+ - Transformers: 4.35.2
175
+ - PyTorch: 2.1.1
176
+ - Datasets: 2.15.0
177
+ - Tokenizers: 0.15.0
178
+
179
+ ## Citation
180
+
181
+ ### BibTeX
182
+ ```
183
+ @software{Aarsen_SpanMarker,
184
+ author = {Aarsen, Tom},
185
+ license = {Apache-2.0},
186
+ title = {{SpanMarker for Named Entity Recognition}},
187
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
188
+ }
189
+ ```
190
+
191
+ <!--
192
+ ## Glossary
193
+
194
+ *Clearly define terms in order to be accessible across audiences.*
195
+ -->
196
+
197
+ <!--
198
+ ## Model Card Authors
199
+
200
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
201
+ -->
202
+
203
+ <!--
204
+ ## Model Card Contact
205
+
206
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
207
+ -->
final_checkpoint/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 50266,
3
+ "<start>": 50265
4
+ }
final_checkpoint/config.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "numind/generic-entity_recognition_NER-v1",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "RobertaModel"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "O",
33
+ "1": "B-PER",
34
+ "2": "I-PER",
35
+ "3": "B-ORG",
36
+ "4": "I-ORG",
37
+ "5": "B-LOC",
38
+ "6": "I-LOC",
39
+ "7": "B-MISC",
40
+ "8": "I-MISC"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "is_decoder": false,
45
+ "is_encoder_decoder": false,
46
+ "label2id": {
47
+ "B-LOC": 5,
48
+ "B-MISC": 7,
49
+ "B-ORG": 3,
50
+ "B-PER": 1,
51
+ "I-LOC": 6,
52
+ "I-MISC": 8,
53
+ "I-ORG": 4,
54
+ "I-PER": 2,
55
+ "O": 0
56
+ },
57
+ "layer_norm_eps": 1e-05,
58
+ "length_penalty": 1.0,
59
+ "max_length": 20,
60
+ "max_position_embeddings": 514,
61
+ "min_length": 0,
62
+ "model_type": "roberta",
63
+ "no_repeat_ngram_size": 0,
64
+ "num_attention_heads": 12,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_hidden_layers": 12,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 1,
73
+ "position_embedding_type": "absolute",
74
+ "prefix": null,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "sep_token_id": null,
82
+ "suppress_tokens": null,
83
+ "task_specific_params": null,
84
+ "temperature": 1.0,
85
+ "tf_legacy_loss": false,
86
+ "tie_encoder_decoder": false,
87
+ "tie_word_embeddings": true,
88
+ "tokenizer_class": null,
89
+ "top_k": 50,
90
+ "top_p": 1.0,
91
+ "torch_dtype": "float32",
92
+ "torchscript": false,
93
+ "transformers_version": "4.35.2",
94
+ "type_vocab_size": 1,
95
+ "typical_p": 1.0,
96
+ "use_bfloat16": false,
97
+ "use_cache": true,
98
+ "vocab_size": 50272
99
+ },
100
+ "entity_max_length": 8,
101
+ "id2label": {
102
+ "0": "O",
103
+ "1": "LOC",
104
+ "2": "MISC",
105
+ "3": "ORG",
106
+ "4": "PER"
107
+ },
108
+ "id2reduced_id": {
109
+ "0": 0,
110
+ "1": 4,
111
+ "2": 4,
112
+ "3": 3,
113
+ "4": 3,
114
+ "5": 1,
115
+ "6": 1,
116
+ "7": 2,
117
+ "8": 2
118
+ },
119
+ "label2id": {
120
+ "LOC": 1,
121
+ "MISC": 2,
122
+ "O": 0,
123
+ "ORG": 3,
124
+ "PER": 4
125
+ },
126
+ "marker_max_length": 128,
127
+ "max_next_context": null,
128
+ "max_prev_context": null,
129
+ "model_max_length": 256,
130
+ "model_max_length_default": 512,
131
+ "model_type": "span-marker",
132
+ "span_marker_version": "1.5.0",
133
+ "torch_dtype": "float32",
134
+ "trained_with_document_context": false,
135
+ "transformers_version": "4.35.2",
136
+ "vocab_size": 50272
137
+ }
final_checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
final_checkpoint/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49b36674a4a2212103babf7c89a480f28beda539fe2405b40e600e9d7ecdf78f
3
+ size 498658900
final_checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
final_checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
final_checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50265": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50266": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 8,
65
+ "eos_token": "</s>",
66
+ "errors": "replace",
67
+ "marker_max_length": 128,
68
+ "mask_token": "<mask>",
69
+ "model_max_length": 256,
70
+ "pad_token": "<pad>",
71
+ "sep_token": "</s>",
72
+ "tokenizer_class": "RobertaTokenizer",
73
+ "trim_offsets": true,
74
+ "unk_token": "<unk>"
75
+ }
final_checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e59b483ca68e24f1af6db4be79ca4aa90ec0e5631888f05062697b0b3dc48b1
3
+ size 4600
final_checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a6bf2c6823af8b1db1501954b964abc4ec61106645fc8f502a4d0146beac4b4
3
  size 498658900
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49b36674a4a2212103babf7c89a480f28beda539fe2405b40e600e9d7ecdf78f
3
  size 498658900
runs/Nov27_09-44-18_trinity/events.out.tfevents.1701078284.trinity.345806.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83554f98f9cd005ae8526cf2b23e07b76d93b4825777f30a8b5e9c08c2e91e55
3
- size 10054
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dff3ed0449f13d553a02e4935997ce29311a5e8bcb78641b80d40fd2bebe9d0
3
+ size 11664
runs/Nov27_09-44-18_trinity/events.out.tfevents.1701078794.trinity.345806.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be057ef897b6aa91ef00edc804d80f62ee318a892ca1d7e71a0b189e485cb86
3
+ size 592
test_results.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_LOC": {
4
+ "f1": 0.9360812425328554,
5
+ "number": 1668,
6
+ "precision": 0.9327380952380953,
7
+ "recall": 0.9394484412470024
8
+ },
9
+ "test_MISC": {
10
+ "f1": 0.8210089841050449,
11
+ "number": 702,
12
+ "precision": 0.7973154362416107,
13
+ "recall": 0.8461538461538461
14
+ },
15
+ "test_ORG": {
16
+ "f1": 0.9059420722603764,
17
+ "number": 1661,
18
+ "precision": 0.898696682464455,
19
+ "recall": 0.9133052378085491
20
+ },
21
+ "test_PER": {
22
+ "f1": 0.9658172778123058,
23
+ "number": 1617,
24
+ "precision": 0.9706433479075578,
25
+ "recall": 0.961038961038961
26
+ },
27
+ "test_loss": 0.02015703357756138,
28
+ "test_overall_accuracy": 0.9824701195219123,
29
+ "test_overall_f1": 0.9209646189051223,
30
+ "test_overall_precision": 0.9156457822891144,
31
+ "test_overall_recall": 0.9263456090651558,
32
+ "test_runtime": 15.7711,
33
+ "test_samples_per_second": 236.572,
34
+ "test_steps_per_second": 7.419
35
+ }