File size: 7,560 Bytes
c4c0ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73f81039",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import pipeline\n",
    "from termcolor import colored\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b8a8891e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# !pip install termcolor==1.1.0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "44668ca1",
   "metadata": {},
   "outputs": [],
   "source": [
    "class Ner_Extractor:\n",
    "    \n",
    "    def __init__(self, model_checkpoint):\n",
    "        \n",
    "        self.token_pred_pipeline = pipeline(\"token-classification\", \n",
    "                                            model=model_checkpoint, \n",
    "                                            aggregation_strategy=\"average\")\n",
    "    \n",
    "    @staticmethod\n",
    "    def text_color(txt, txt_c=\"blue\", txt_hglt=\"on_yellow\"):\n",
    "        return colored(txt, txt_c, txt_hglt)\n",
    "    \n",
    "    @staticmethod\n",
    "    def concat_entities(ner_result):\n",
    "        \n",
    "        entities = []\n",
    "        prev_entity = None\n",
    "        prev_end = 0\n",
    "        for i in range(len(ner_result)):\n",
    "            if (ner_result[i][\"entity_group\"] == prev_entity) &\\\n",
    "               (ner_result[i][\"start\"] == prev_end):\n",
    "                entities[i-1][2] = ner_result[i][\"end\"]\n",
    "                prev_entity = ner_result[i][\"entity_group\"]\n",
    "                prev_end = ner_result[i][\"end\"]\n",
    "            else:\n",
    "                entities.append([ner_result[i][\"entity_group\"], \n",
    "                                 ner_result[i][\"start\"], \n",
    "                                 ner_result[i][\"end\"]])\n",
    "                prev_entity = ner_result[i][\"entity_group\"]\n",
    "                prev_end = ner_result[i][\"end\"]\n",
    "        \n",
    "        return entities\n",
    "    \n",
    "    \n",
    "    def colored_text(self, text, entities):\n",
    "        \n",
    "        colored_text = \"\"\n",
    "        init_pos = 0\n",
    "        for ent in entities:\n",
    "            if ent[1] > init_pos:\n",
    "                colored_text += text[init_pos: ent[1]]\n",
    "                colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
    "                init_pos = ent[2]\n",
    "            else:\n",
    "                colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
    "                init_pos = ent[2]\n",
    "        \n",
    "        return colored_text\n",
    "    \n",
    "    \n",
    "    def get_entities(self, text):\n",
    "        \n",
    "        entities = self.token_pred_pipeline(text)\n",
    "        concat_ent = self.concat_entities(entities)\n",
    "        \n",
    "        return concat_ent\n",
    "    \n",
    "    \n",
    "    def show_ents_on_text(self, text: str):\n",
    "        \n",
    "        entities = self.get_entities(text)\n",
    "        \n",
    "        return self.colored_text(text, entities)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "30e9efd9",
   "metadata": {},
   "outputs": [],
   "source": [
    "seqs_example = [\"Минобороны: ракетами «Калибр» уничтожена техника дивизиона С-300, поставленная из Европы\",\n",
    "\"Боррель подтвердил стремление ЕС к военному сценарию урегулирования конфликта на Украине\",\n",
    "\"Ericsson приостановит бизнес в России на неопределенный срок\",\n",
    "\"Минобороны заявило о захвате ВС России новых танков ВСУ под Изюмом\",\n",
    "\"Макрон вышел в лидеры в первом туре выборов во Франции после обработки 97% бюллетеней\",\n",
    "\"Глава МИД Литвы: страны ЕС начали работу над шестым пакетом санкций против России\",\n",
    "\"«Интеррос» Потанина объявил о покупке Росбанка у Societe Generale\",\n",
    "\"Доллар и евро на Мосбирже подорожали на открытии торгов\",\n",
    "\"Басурин заявил, что порт в Мариуполе освобожден на 80%\",\n",
    "\"Путин поручил Промсвязьбанку открыть отделения в Крыму до октября\",\n",
    "\"Milliyet: Турция рассматривает покупку российских Су-57 в случае отказа США продавать F-16\",\n",
    "\"Швеция и Финляндия подадут заявку на вступление в НАТО летом текущего года\",\n",
    "\"Сенатор Косачев предупредил об использовании оружия массового поражения на Украине\",\n",
    "\"Встреча президента Путина и канцлера Нехаммера пройдет без журналистов и пресс-конференции\",\n",
    "\"Кадыров заявил о широкомасштабном наступлении на города и сёла Украины\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "380d9824",
   "metadata": {},
   "outputs": [],
   "source": [
    "extractor = Ner_Extractor(model_checkpoint = \"surdan/LaBSE_ner_nerel\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "37ebcf51",
   "metadata": {},
   "outputs": [],
   "source": [
    "show_entities_in_text = (extractor.show_ents_on_text(i) for i in seqs_example)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14807823",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e03b28c7",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2d4ae84",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(next(show_entities_in_text, \"Конец\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8ab57d1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47fbcff9",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41c32b90",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07bb735e",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}