Upload Train_model.ipynb
Browse files- Train_model.ipynb +361 -0
Train_model.ipynb
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "3ca08817",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# !pip install seqeval"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "c5958200",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# import torch\n",
|
21 |
+
"# torch.cuda.is_available(), torch.cuda.device_count()"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"id": "590c3f48",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"import warnings\n",
|
32 |
+
"warnings.filterwarnings('ignore')\n",
|
33 |
+
"\n",
|
34 |
+
"import pickle\n",
|
35 |
+
"import numpy as np\n",
|
36 |
+
"import transformers\n",
|
37 |
+
"from transformers import Trainer\n",
|
38 |
+
"from datasets import load_metric\n",
|
39 |
+
"from datasets import load_dataset\n",
|
40 |
+
"from transformers import AutoTokenizer\n",
|
41 |
+
"from transformers import TrainingArguments\n",
|
42 |
+
"from transformers import AutoModelForTokenClassification\n",
|
43 |
+
"from transformers import DataCollatorForTokenClassification"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "markdown",
|
48 |
+
"id": "44d7c35c",
|
49 |
+
"metadata": {},
|
50 |
+
"source": [
|
51 |
+
"## Helpful funcs "
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"id": "5c9e36d9",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"def align_labels_with_tokens(labels: list, word_ids: list) -> list:\n",
|
62 |
+
" \"\"\"\n",
|
63 |
+
" Repeat label for each splitted token\n",
|
64 |
+
"\n",
|
65 |
+
" :param labels: list of entities token\n",
|
66 |
+
" :type labels: list\n",
|
67 |
+
" :param word_ids: list of word ids (repeadted if word was splitted)\n",
|
68 |
+
" :type word_ids: list\n",
|
69 |
+
" :return: list of aligned labels for tokenized sequence\n",
|
70 |
+
" :rtype: list\n",
|
71 |
+
" \"\"\"\n",
|
72 |
+
" return [-100 if i is None else labels[i] for i in word_ids]\n",
|
73 |
+
"\n",
|
74 |
+
"def tokenize_and_align_labels(examples):\n",
|
75 |
+
" \"\"\"\n",
|
76 |
+
" Tokenizing input sequence with corresponding labels\n",
|
77 |
+
"\n",
|
78 |
+
" :param examples: DatasetDict object with sequences and label ids\n",
|
79 |
+
" :type examples: DatasetDict\n",
|
80 |
+
" :return: DatasetDict with tokenizer output\n",
|
81 |
+
" :rtype: DatasetDict\n",
|
82 |
+
" \"\"\"\n",
|
83 |
+
" tokenized_inputs = tokenizer(\n",
|
84 |
+
" examples[\"sequences\"], truncation=True, is_split_into_words=True\n",
|
85 |
+
" )\n",
|
86 |
+
" all_labels = examples[\"ids\"]\n",
|
87 |
+
" new_labels = []\n",
|
88 |
+
" for i, labels in enumerate(all_labels):\n",
|
89 |
+
" word_ids = tokenized_inputs.word_ids(i)\n",
|
90 |
+
" new_labels.append(align_labels_with_tokens(labels, word_ids))\n",
|
91 |
+
"\n",
|
92 |
+
" tokenized_inputs[\"labels\"] = new_labels\n",
|
93 |
+
" return tokenized_inputs\n",
|
94 |
+
"\n",
|
95 |
+
"def compute_metrics(eval_preds):\n",
|
96 |
+
" \"\"\"\n",
|
97 |
+
" Function for evaluate model\n",
|
98 |
+
" \n",
|
99 |
+
" :param eval_preds: model output\n",
|
100 |
+
" :type eval_preds: \n",
|
101 |
+
" \"\"\"\n",
|
102 |
+
" logits, labels = eval_preds\n",
|
103 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
104 |
+
"\n",
|
105 |
+
" # Remove ignored index (special tokens) and convert to labels\n",
|
106 |
+
" true_labels = [[label_names[l] for l in label if l != -100] for label in labels]\n",
|
107 |
+
" true_predictions = [[label_names[p] for (p, l) in zip(prediction, label) if l != -100]\n",
|
108 |
+
" for prediction, label in zip(predictions, labels)\n",
|
109 |
+
" ]\n",
|
110 |
+
" all_metrics = metric.compute(predictions=true_predictions, references=true_labels)\n",
|
111 |
+
" return {\n",
|
112 |
+
" \"precision\": all_metrics[\"overall_precision\"],\n",
|
113 |
+
" \"recall\": all_metrics[\"overall_recall\"],\n",
|
114 |
+
" \"f1\": all_metrics[\"overall_f1\"],\n",
|
115 |
+
" \"accuracy\": all_metrics[\"overall_accuracy\"],\n",
|
116 |
+
" }"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"id": "8760e709",
|
122 |
+
"metadata": {},
|
123 |
+
"source": [
|
124 |
+
"## Load Data"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": null,
|
130 |
+
"id": "e8c723f7",
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"raw_datasets = load_dataset(\"surdan/nerel_short\")"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": null,
|
140 |
+
"id": "e540a898",
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [],
|
143 |
+
"source": [
|
144 |
+
"raw_datasets"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "markdown",
|
149 |
+
"id": "5a4947d1",
|
150 |
+
"metadata": {},
|
151 |
+
"source": [
|
152 |
+
"## Preprocess data"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
158 |
+
"id": "8829557e",
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"model_checkpoint = \"cointegrated/LaBSE-en-ru\""
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": null,
|
168 |
+
"id": "b6c13ad1",
|
169 |
+
"metadata": {},
|
170 |
+
"outputs": [],
|
171 |
+
"source": [
|
172 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": null,
|
178 |
+
"id": "ea2c1a9e",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"tokenized_datasets = raw_datasets.map(\n",
|
183 |
+
" tokenize_and_align_labels,\n",
|
184 |
+
" batched=True,\n",
|
185 |
+
" remove_columns=raw_datasets[\"train\"].column_names,\n",
|
186 |
+
")"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"id": "b15c3cf1",
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"tokenized_datasets"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "markdown",
|
201 |
+
"id": "e9b5b9b1",
|
202 |
+
"metadata": {},
|
203 |
+
"source": [
|
204 |
+
"## Init Training pipeline"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": null,
|
210 |
+
"id": "b24d86e3",
|
211 |
+
"metadata": {},
|
212 |
+
"outputs": [],
|
213 |
+
"source": [
|
214 |
+
"with open('id_to_label_map.pickle', 'rb') as f:\n",
|
215 |
+
" map_id_to_label = pickle.load(f)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"id": "1d90a6d9",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"execution_count": null,
|
231 |
+
"id": "3d890df2",
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [],
|
234 |
+
"source": [
|
235 |
+
"id2label = {str(k): v for k, v in map_id_to_label.items()}\n",
|
236 |
+
"label2id = {v: k for k, v in id2label.items()}\n",
|
237 |
+
"label_names = list(id2label.values())"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"id": "31bcfd6c",
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"model = AutoModelForTokenClassification.from_pretrained(\n",
|
248 |
+
" model_checkpoint,\n",
|
249 |
+
" id2label=id2label,\n",
|
250 |
+
" label2id=label2id,\n",
|
251 |
+
")"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": null,
|
257 |
+
"id": "84497580",
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"model.config.num_labels"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": null,
|
267 |
+
"id": "1ccfbf74",
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"args = TrainingArguments(\n",
|
272 |
+
" \"LaBSE_ner_nerel\",\n",
|
273 |
+
" evaluation_strategy=\"epoch\",\n",
|
274 |
+
" save_strategy=\"no\",\n",
|
275 |
+
" learning_rate=2e-5,\n",
|
276 |
+
" num_train_epochs=25,\n",
|
277 |
+
" weight_decay=0.01,\n",
|
278 |
+
" push_to_hub=False,\n",
|
279 |
+
" per_device_train_batch_size = 4 ## depending on the total volume of memory of your GPU\n",
|
280 |
+
")"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "markdown",
|
285 |
+
"id": "c798d567",
|
286 |
+
"metadata": {},
|
287 |
+
"source": [
|
288 |
+
"## Train model"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": null,
|
294 |
+
"id": "1348d188",
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"## for compute_metrics function\n",
|
299 |
+
"metric = load_metric(\"seqeval\")"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": null,
|
305 |
+
"id": "5cff0367",
|
306 |
+
"metadata": {},
|
307 |
+
"outputs": [],
|
308 |
+
"source": [
|
309 |
+
"trainer = Trainer(\n",
|
310 |
+
" model=model,\n",
|
311 |
+
" args=args,\n",
|
312 |
+
" train_dataset=tokenized_datasets[\"train\"],\n",
|
313 |
+
" eval_dataset=tokenized_datasets[\"dev\"],\n",
|
314 |
+
" data_collator=data_collator,\n",
|
315 |
+
" compute_metrics=compute_metrics,\n",
|
316 |
+
" tokenizer=tokenizer,\n",
|
317 |
+
")\n",
|
318 |
+
"trainer.train()"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": null,
|
324 |
+
"id": "576a10f4",
|
325 |
+
"metadata": {},
|
326 |
+
"outputs": [],
|
327 |
+
"source": [
|
328 |
+
"trainer.save_model(\"LaBSE_nerel_last_checkpoint\")"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": null,
|
334 |
+
"id": "451d6db1",
|
335 |
+
"metadata": {},
|
336 |
+
"outputs": [],
|
337 |
+
"source": []
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"metadata": {
|
341 |
+
"kernelspec": {
|
342 |
+
"display_name": "hf_env",
|
343 |
+
"language": "python",
|
344 |
+
"name": "hf_env"
|
345 |
+
},
|
346 |
+
"language_info": {
|
347 |
+
"codemirror_mode": {
|
348 |
+
"name": "ipython",
|
349 |
+
"version": 3
|
350 |
+
},
|
351 |
+
"file_extension": ".py",
|
352 |
+
"mimetype": "text/x-python",
|
353 |
+
"name": "python",
|
354 |
+
"nbconvert_exporter": "python",
|
355 |
+
"pygments_lexer": "ipython3",
|
356 |
+
"version": "3.8.10"
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"nbformat": 4,
|
360 |
+
"nbformat_minor": 5
|
361 |
+
}
|