Upload Inference.ipynb
Browse files- Inference.ipynb +208 -0
Inference.ipynb
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "73f81039",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import pipeline\n",
|
11 |
+
"from termcolor import colored\n",
|
12 |
+
"import torch"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "b8a8891e",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"# !pip install termcolor==1.1.0"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"id": "44668ca1",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"class Ner_Extractor:\n",
|
33 |
+
" \n",
|
34 |
+
" def __init__(self, model_checkpoint):\n",
|
35 |
+
" \n",
|
36 |
+
" self.token_pred_pipeline = pipeline(\"token-classification\", \n",
|
37 |
+
" model=model_checkpoint, \n",
|
38 |
+
" aggregation_strategy=\"average\")\n",
|
39 |
+
" \n",
|
40 |
+
" @staticmethod\n",
|
41 |
+
" def text_color(txt, txt_c=\"blue\", txt_hglt=\"on_yellow\"):\n",
|
42 |
+
" return colored(txt, txt_c, txt_hglt)\n",
|
43 |
+
" \n",
|
44 |
+
" @staticmethod\n",
|
45 |
+
" def concat_entities(ner_result):\n",
|
46 |
+
" \n",
|
47 |
+
" entities = []\n",
|
48 |
+
" prev_entity = None\n",
|
49 |
+
" prev_end = 0\n",
|
50 |
+
" for i in range(len(ner_result)):\n",
|
51 |
+
" if (ner_result[i][\"entity_group\"] == prev_entity) &\\\n",
|
52 |
+
" (ner_result[i][\"start\"] == prev_end):\n",
|
53 |
+
" entities[i-1][2] = ner_result[i][\"end\"]\n",
|
54 |
+
" prev_entity = ner_result[i][\"entity_group\"]\n",
|
55 |
+
" prev_end = ner_result[i][\"end\"]\n",
|
56 |
+
" else:\n",
|
57 |
+
" entities.append([ner_result[i][\"entity_group\"], \n",
|
58 |
+
" ner_result[i][\"start\"], \n",
|
59 |
+
" ner_result[i][\"end\"]])\n",
|
60 |
+
" prev_entity = ner_result[i][\"entity_group\"]\n",
|
61 |
+
" prev_end = ner_result[i][\"end\"]\n",
|
62 |
+
" \n",
|
63 |
+
" return entities\n",
|
64 |
+
" \n",
|
65 |
+
" \n",
|
66 |
+
" def colored_text(self, text, entities):\n",
|
67 |
+
" \n",
|
68 |
+
" colored_text = \"\"\n",
|
69 |
+
" init_pos = 0\n",
|
70 |
+
" for ent in entities:\n",
|
71 |
+
" if ent[1] > init_pos:\n",
|
72 |
+
" colored_text += text[init_pos: ent[1]]\n",
|
73 |
+
" colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
|
74 |
+
" init_pos = ent[2]\n",
|
75 |
+
" else:\n",
|
76 |
+
" colored_text += self.text_color(text[ent[1]: ent[2]]) + f\"({ent[0]})\"\n",
|
77 |
+
" init_pos = ent[2]\n",
|
78 |
+
" \n",
|
79 |
+
" return colored_text\n",
|
80 |
+
" \n",
|
81 |
+
" \n",
|
82 |
+
" def get_entities(self, text: str):\n",
|
83 |
+
" \n",
|
84 |
+
" entities = self.token_pred_pipeline(text)\n",
|
85 |
+
" concat_ent = self.concat_entities(entities)\n",
|
86 |
+
" \n",
|
87 |
+
" return concat_ent\n",
|
88 |
+
" \n",
|
89 |
+
" \n",
|
90 |
+
" def show_ents_on_text(self, text: str):\n",
|
91 |
+
" \n",
|
92 |
+
" entities = self.get_entities(text)\n",
|
93 |
+
" \n",
|
94 |
+
" return self.colored_text(text, entities)"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "aaa0a5bd",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"seqs_example = [\"Из Дзюбы вышел бы отличный бразилец». Интервью Клаудиньо\",\n",
|
105 |
+
"\"Самый яркий бразилец «Зенита» рассказал о встрече с Пеле, страшном морозе в Самаре и любимых финтах Роналдиньо\",\n",
|
106 |
+
"\"Стали известны подробности нового иска РФС к УЕФА и ФИФА\",\n",
|
107 |
+
"\"Реванш «Баварии», голы от «Реала» с «Челси»: ставим на ЛЧ\",\n",
|
108 |
+
"\"Кварацхелия не вернется в «Рубин» и станет игроком «Наполи»\",\n",
|
109 |
+
"\"«Манчестер Сити» сделал грандиозное предложение по Холанду\",\n",
|
110 |
+
"\"В России хотят возродить Кубок лиги. Он проводился в 2003 году\",\n",
|
111 |
+
"\"Экс-игрок «Реала» находится в критическом состоянии после ДТП\",\n",
|
112 |
+
"\"Аршавин посмеялся над показателями Глушакова в игре с ЦСКА\",\n",
|
113 |
+
"\"Арьен Роббен пробежал 42-километровый марафон\"]"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"id": "380d9824",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"%%time\n",
|
124 |
+
"extractor = Ner_Extractor(model_checkpoint = \"surdan/LaBSE_ner_nerel\")"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": null,
|
130 |
+
"id": "37ebcf51",
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"%%time\n",
|
135 |
+
"show_entities_in_text = (extractor.show_ents_on_text(i) for i in seqs_example)"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": null,
|
141 |
+
"id": "e03b28c7",
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"%%time\n",
|
146 |
+
"l_entities = [extractor.get_entities(i) for i in seqs_example]\n",
|
147 |
+
"len(l_entities), len(seqs_example)"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"id": "a2d4ae84",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"for i in range(len(seqs_example)):\n",
|
158 |
+
" print(next(show_entities_in_text, \"End of generator\"))\n",
|
159 |
+
" print(\"-*-\"*25)"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": null,
|
165 |
+
"id": "47fbcff9",
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": []
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"id": "41c32b90",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": []
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"id": "07bb735e",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": []
|
185 |
+
}
|
186 |
+
],
|
187 |
+
"metadata": {
|
188 |
+
"kernelspec": {
|
189 |
+
"display_name": "Python 3 (ipykernel)",
|
190 |
+
"language": "python",
|
191 |
+
"name": "python3"
|
192 |
+
},
|
193 |
+
"language_info": {
|
194 |
+
"codemirror_mode": {
|
195 |
+
"name": "ipython",
|
196 |
+
"version": 3
|
197 |
+
},
|
198 |
+
"file_extension": ".py",
|
199 |
+
"mimetype": "text/x-python",
|
200 |
+
"name": "python",
|
201 |
+
"nbconvert_exporter": "python",
|
202 |
+
"pygments_lexer": "ipython3",
|
203 |
+
"version": "3.8.10"
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"nbformat": 4,
|
207 |
+
"nbformat_minor": 5
|
208 |
+
}
|