Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,107 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
```python
|
7 |
+
|
8 |
+
import random
|
9 |
+
import json
|
10 |
+
|
11 |
+
def generate_random_data():
|
12 |
+
return {
|
13 |
+
"Users": random.randint(5, 20),
|
14 |
+
"Groups": random.randint(10, 30),
|
15 |
+
"Projects/Repositories": random.randint(4000, 5000),
|
16 |
+
"Scans": random.randint(40, 100),
|
17 |
+
"Lines_of_Code": random.randint(25000000, 35000000),
|
18 |
+
"Vulnerabilities": random.randint(7000, 8000),
|
19 |
+
"False_Positives": random.randint(10, 30),
|
20 |
+
"True_Positives": random.randint(150, 200),
|
21 |
+
"Confirmed_Vulnerabilities": {
|
22 |
+
"Secret": random.randint(0, 200),
|
23 |
+
"PII": random.randint(0, 200),
|
24 |
+
"SAST": random.randint(0, 200),
|
25 |
+
"SCA": random.randint(0, 200),
|
26 |
+
"IaC": random.randint(0, 200),
|
27 |
+
"Container": random.randint(0, 200),
|
28 |
+
"API": random.randint(0, 200),
|
29 |
+
"Compliance": random.randint(0, 200),
|
30 |
+
"Malware": random.randint(0, 225)
|
31 |
+
},
|
32 |
+
"Trend_Percentages": {
|
33 |
+
"Scans": round(random.uniform(-100, +100), 2),
|
34 |
+
"Lines_of_Code": round(random.uniform(-100, -100), 2),
|
35 |
+
"Vulnerabilities": round(random.uniform(-100, -100), 2),
|
36 |
+
"False_Positives": round(random.uniform(-100, 1000), 2),
|
37 |
+
"True_Positives": round(random.uniform(-100, 100), 2),
|
38 |
+
"Secret": round(random.uniform(-100, 1500), 2),
|
39 |
+
"PII": round(random.uniform(-100, 1500), 2),
|
40 |
+
"SAST": round(random.uniform(-100, 1500), 2),
|
41 |
+
"SCA": round(random.uniform(-100, 1500), 2),
|
42 |
+
"IaC": round(random.uniform(-100, 1500), 2),
|
43 |
+
"Compliance": round(random.uniform(-100, 1500), 2),
|
44 |
+
"Malware": round(random.uniform(-100, 1500), 2),
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def json_to_semi_structured_text(data):
|
51 |
+
|
52 |
+
data = json.loads(data.replace("'",'"'))
|
53 |
+
"""
|
54 |
+
Convert JSON data into a semi-structured text format for training T5-Flan.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
data (dict): The JSON object to convert.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
str: Semi-structured text representation of the JSON.
|
61 |
+
"""
|
62 |
+
text_output = []
|
63 |
+
|
64 |
+
for key, value in data.items():
|
65 |
+
if isinstance(value, dict):
|
66 |
+
# Handle nested dictionaries
|
67 |
+
text_output.append(f"{key.capitalize()}:")
|
68 |
+
for sub_key, sub_value in value.items():
|
69 |
+
text_output.append(f"- {sub_key}: {sub_value}")
|
70 |
+
else:
|
71 |
+
# Direct key-value pairs
|
72 |
+
text_output.append(f"{key.replace('_', ' ').capitalize()}: {value}")
|
73 |
+
|
74 |
+
return "\n".join(text_output)
|
75 |
+
|
76 |
+
```
|
77 |
+
|
78 |
+
### Inference
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
```python
|
83 |
+
# Load model directly
|
84 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained("suriya7/t5-data-reasoning")
|
87 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/t5-data-reasoning")
|
88 |
+
|
89 |
+
|
90 |
+
data_inp = json_to_semi_structured_text(str(generate_random_data()))
|
91 |
+
|
92 |
+
inp = "Summarize and reason: " + data_inp
|
93 |
+
|
94 |
+
import time
|
95 |
+
|
96 |
+
start = time.time()
|
97 |
+
|
98 |
+
inputs = tokenizer(inp, return_tensors="pt",truncation=True)
|
99 |
+
model.to(device)
|
100 |
+
inputs = inputs.to(device)
|
101 |
+
outputs = model.generate(**inputs,max_length=256,do_sample=False)
|
102 |
+
answer = tokenizer.decode(outputs[0])
|
103 |
+
print(answer)
|
104 |
+
|
105 |
+
end = time.time()
|
106 |
+
print(f"Time taken: {end - start}")
|
107 |
+
print('\n\n')
|
108 |
+
print("input: "+inp)
|
109 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|