suriya7 commited on
Commit
1d80ddf
1 Parent(s): a603404

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -194
README.md CHANGED
@@ -3,197 +3,107 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ ```python
7
+
8
+ import random
9
+ import json
10
+
11
+ def generate_random_data():
12
+ return {
13
+ "Users": random.randint(5, 20),
14
+ "Groups": random.randint(10, 30),
15
+ "Projects/Repositories": random.randint(4000, 5000),
16
+ "Scans": random.randint(40, 100),
17
+ "Lines_of_Code": random.randint(25000000, 35000000),
18
+ "Vulnerabilities": random.randint(7000, 8000),
19
+ "False_Positives": random.randint(10, 30),
20
+ "True_Positives": random.randint(150, 200),
21
+ "Confirmed_Vulnerabilities": {
22
+ "Secret": random.randint(0, 200),
23
+ "PII": random.randint(0, 200),
24
+ "SAST": random.randint(0, 200),
25
+ "SCA": random.randint(0, 200),
26
+ "IaC": random.randint(0, 200),
27
+ "Container": random.randint(0, 200),
28
+ "API": random.randint(0, 200),
29
+ "Compliance": random.randint(0, 200),
30
+ "Malware": random.randint(0, 225)
31
+ },
32
+ "Trend_Percentages": {
33
+ "Scans": round(random.uniform(-100, +100), 2),
34
+ "Lines_of_Code": round(random.uniform(-100, -100), 2),
35
+ "Vulnerabilities": round(random.uniform(-100, -100), 2),
36
+ "False_Positives": round(random.uniform(-100, 1000), 2),
37
+ "True_Positives": round(random.uniform(-100, 100), 2),
38
+ "Secret": round(random.uniform(-100, 1500), 2),
39
+ "PII": round(random.uniform(-100, 1500), 2),
40
+ "SAST": round(random.uniform(-100, 1500), 2),
41
+ "SCA": round(random.uniform(-100, 1500), 2),
42
+ "IaC": round(random.uniform(-100, 1500), 2),
43
+ "Compliance": round(random.uniform(-100, 1500), 2),
44
+ "Malware": round(random.uniform(-100, 1500), 2),
45
+ }
46
+ }
47
+
48
+
49
+
50
+ def json_to_semi_structured_text(data):
51
+
52
+ data = json.loads(data.replace("'",'"'))
53
+ """
54
+ Convert JSON data into a semi-structured text format for training T5-Flan.
55
+
56
+ Args:
57
+ data (dict): The JSON object to convert.
58
+
59
+ Returns:
60
+ str: Semi-structured text representation of the JSON.
61
+ """
62
+ text_output = []
63
+
64
+ for key, value in data.items():
65
+ if isinstance(value, dict):
66
+ # Handle nested dictionaries
67
+ text_output.append(f"{key.capitalize()}:")
68
+ for sub_key, sub_value in value.items():
69
+ text_output.append(f"- {sub_key}: {sub_value}")
70
+ else:
71
+ # Direct key-value pairs
72
+ text_output.append(f"{key.replace('_', ' ').capitalize()}: {value}")
73
+
74
+ return "\n".join(text_output)
75
+
76
+ ```
77
+
78
+ ### Inference
79
+
80
+
81
+
82
+ ```python
83
+ # Load model directly
84
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained("suriya7/t5-data-reasoning")
87
+ model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/t5-data-reasoning")
88
+
89
+
90
+ data_inp = json_to_semi_structured_text(str(generate_random_data()))
91
+
92
+ inp = "Summarize and reason: " + data_inp
93
+
94
+ import time
95
+
96
+ start = time.time()
97
+
98
+ inputs = tokenizer(inp, return_tensors="pt",truncation=True)
99
+ model.to(device)
100
+ inputs = inputs.to(device)
101
+ outputs = model.generate(**inputs,max_length=256,do_sample=False)
102
+ answer = tokenizer.decode(outputs[0])
103
+ print(answer)
104
+
105
+ end = time.time()
106
+ print(f"Time taken: {end - start}")
107
+ print('\n\n')
108
+ print("input: "+inp)
109
+ ```