File size: 2,203 Bytes
f062121
 
98b990e
 
 
 
 
 
 
 
 
f062121
 
98b990e
 
f062121
98b990e
f062121
98b990e
 
 
 
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
f062121
98b990e
 
 
 
 
 
 
 
 
 
 
 
f062121
98b990e
f062121
98b990e
 
 
 
 
 
 
 
 
 
 
 
 
f062121
 
98b990e
f062121
98b990e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-clp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-a-clp

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0267
- Wer: 11.7400

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 3.4117        | 2.5063  | 100  | 0.6501          | 50.3145 |
| 0.1828        | 5.0     | 200  | 0.0349          | 25.3669 |
| 0.0163        | 7.5063  | 300  | 0.0345          | 19.4969 |
| 0.0111        | 10.0    | 400  | 0.0335          | 25.3669 |
| 0.0076        | 12.5063 | 500  | 0.0279          | 14.2558 |
| 0.0074        | 15.0    | 600  | 0.0262          | 12.3690 |
| 0.0064        | 17.5063 | 700  | 0.0260          | 12.1593 |
| 0.0051        | 20.0    | 800  | 0.0262          | 12.1593 |
| 0.0041        | 22.5063 | 900  | 0.0280          | 9.2243  |
| 0.0037        | 25.0    | 1000 | 0.0275          | 11.5304 |
| 0.0029        | 27.5063 | 1100 | 0.0267          | 11.7400 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0