whisper-a-clp / README.md
susmitabhatt's picture
End of training
98b990e verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-a-clp
    results: []

whisper-a-clp

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0267
  • Wer: 11.7400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4117 2.5063 100 0.6501 50.3145
0.1828 5.0 200 0.0349 25.3669
0.0163 7.5063 300 0.0345 19.4969
0.0111 10.0 400 0.0335 25.3669
0.0076 12.5063 500 0.0279 14.2558
0.0074 15.0 600 0.0262 12.3690
0.0064 17.5063 700 0.0260 12.1593
0.0051 20.0 800 0.0262 12.1593
0.0041 22.5063 900 0.0280 9.2243
0.0037 25.0 1000 0.0275 11.5304
0.0029 27.5063 1100 0.0267 11.7400

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0