metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-clp
results: []
whisper-a-clp
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0267
- Wer: 11.7400
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.4117 | 2.5063 | 100 | 0.6501 | 50.3145 |
0.1828 | 5.0 | 200 | 0.0349 | 25.3669 |
0.0163 | 7.5063 | 300 | 0.0345 | 19.4969 |
0.0111 | 10.0 | 400 | 0.0335 | 25.3669 |
0.0076 | 12.5063 | 500 | 0.0279 | 14.2558 |
0.0074 | 15.0 | 600 | 0.0262 | 12.3690 |
0.0064 | 17.5063 | 700 | 0.0260 | 12.1593 |
0.0051 | 20.0 | 800 | 0.0262 | 12.1593 |
0.0041 | 22.5063 | 900 | 0.0280 | 9.2243 |
0.0037 | 25.0 | 1000 | 0.0275 | 11.5304 |
0.0029 | 27.5063 | 1100 | 0.0267 | 11.7400 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0