--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-a-clp results: [] --- # whisper-a-clp This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0267 - Wer: 11.7400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 3.4117 | 2.5063 | 100 | 0.6501 | 50.3145 | | 0.1828 | 5.0 | 200 | 0.0349 | 25.3669 | | 0.0163 | 7.5063 | 300 | 0.0345 | 19.4969 | | 0.0111 | 10.0 | 400 | 0.0335 | 25.3669 | | 0.0076 | 12.5063 | 500 | 0.0279 | 14.2558 | | 0.0074 | 15.0 | 600 | 0.0262 | 12.3690 | | 0.0064 | 17.5063 | 700 | 0.0260 | 12.1593 | | 0.0051 | 20.0 | 800 | 0.0262 | 12.1593 | | 0.0041 | 22.5063 | 900 | 0.0280 | 9.2243 | | 0.0037 | 25.0 | 1000 | 0.0275 | 11.5304 | | 0.0029 | 27.5063 | 1100 | 0.0267 | 11.7400 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0