File size: 5,441 Bytes
b3cabe4 6dbd1df b3cabe4 6dbd1df b3cabe4 6dbd1df b3cabe4 e1b652d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-resnet-50_finetuned_plant_disease_detection_processed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-50_finetuned_plant_disease_detection_processed
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2965 | 0.19 | 50 | 4.4784 |
| 4.7649 | 0.38 | 100 | 4.3439 |
| 4.4907 | 0.57 | 150 | 4.0077 |
| 4.3973 | 0.76 | 200 | 3.2143 |
| 3.4084 | 0.95 | 250 | 2.6818 |
| 2.7091 | 1.14 | 300 | 2.3603 |
| 2.4601 | 1.33 | 350 | 1.9004 |
| 2.1096 | 1.52 | 400 | 1.5639 |
| 1.6941 | 1.7 | 450 | 1.3240 |
| 1.4949 | 1.89 | 500 | 1.1247 |
| 1.2246 | 2.08 | 550 | 1.0421 |
| 1.4479 | 2.27 | 600 | 1.1546 |
| 1.1327 | 2.46 | 650 | 1.1098 |
| 1.1184 | 2.65 | 700 | 0.8950 |
| 1.0516 | 2.84 | 750 | 0.8601 |
| 1.2556 | 3.03 | 800 | 0.8575 |
| 1.1216 | 3.22 | 850 | 0.8314 |
| 1.1027 | 3.41 | 900 | 1.0676 |
| 1.0815 | 3.6 | 950 | 0.9716 |
| 1.2254 | 3.79 | 1000 | 1.0091 |
| 0.9896 | 3.98 | 1050 | 0.7600 |
| 1.0736 | 4.17 | 1100 | 0.8907 |
| 1.2462 | 4.36 | 1150 | 0.7506 |
| 0.9959 | 4.55 | 1200 | 0.7623 |
| 1.0895 | 4.73 | 1250 | 0.7570 |
| 1.0736 | 4.92 | 1300 | 0.8248 |
| 1.1015 | 5.11 | 1350 | 0.8682 |
| 1.1423 | 5.3 | 1400 | 0.8340 |
| 1.0906 | 5.49 | 1450 | 0.8372 |
| 0.9333 | 5.68 | 1500 | 0.8420 |
| 1.1347 | 5.87 | 1550 | 0.8718 |
| 0.9407 | 6.06 | 1600 | 0.8270 |
| 0.8138 | 6.25 | 1650 | 0.8241 |
| 0.8731 | 6.44 | 1700 | 0.8013 |
| 1.0146 | 6.63 | 1750 | 0.7704 |
| 0.8847 | 6.82 | 1800 | 0.8885 |
| 1.0283 | 7.01 | 1850 | 0.8804 |
| 1.0359 | 7.2 | 1900 | 0.7907 |
| 0.987 | 7.39 | 1950 | 0.7997 |
| 1.0279 | 7.58 | 2000 | 0.9095 |
| 0.9027 | 7.77 | 2050 | 0.6823 |
| 0.927 | 7.95 | 2100 | 0.6728 |
| 1.0499 | 8.14 | 2150 | 0.6537 |
| 0.9774 | 8.33 | 2200 | 0.6455 |
| 0.9171 | 8.52 | 2250 | 0.6456 |
| 1.0002 | 8.71 | 2300 | 0.6723 |
| 0.9052 | 8.9 | 2350 | 0.6554 |
| 0.9029 | 9.09 | 2400 | 0.7272 |
| 1.0247 | 9.28 | 2450 | 0.6997 |
| 0.8296 | 9.47 | 2500 | 0.6661 |
| 1.0659 | 9.66 | 2550 | 0.7914 |
| 1.0226 | 9.85 | 2600 | 0.7823 |
| 0.9419 | 10.04 | 2650 | 0.7709 |
| 0.9008 | 10.23 | 2700 | 0.8114 |
| 0.826 | 10.42 | 2750 | 0.7042 |
| 0.7957 | 10.61 | 2800 | 0.7764 |
| 1.0086 | 10.8 | 2850 | 0.8362 |
| 1.0076 | 10.98 | 2900 | 0.8048 |
| 0.9613 | 11.17 | 2950 | 0.6945 |
| 0.9155 | 11.36 | 3000 | 0.7011 |
| 0.9436 | 11.55 | 3050 | 0.6524 |
| 0.9134 | 11.74 | 3100 | 0.6582 |
| 0.817 | 11.93 | 3150 | 0.6678 |
| 0.8545 | 12.12 | 3200 | 0.6520 |
| 0.9801 | 12.31 | 3250 | 0.7813 |
| 0.8566 | 12.5 | 3300 | 0.7205 |
| 0.8966 | 12.69 | 3350 | 0.6326 |
| 0.8705 | 12.88 | 3400 | 0.6577 |
| 0.8193 | 13.07 | 3450 | 0.6391 |
| 0.8099 | 13.26 | 3500 | 0.6658 |
| 0.921 | 13.45 | 3550 | 0.6535 |
| 0.7915 | 13.64 | 3600 | 0.6576 |
| 1.1439 | 13.83 | 3650 | 0.6593 |
| 0.8702 | 14.02 | 3700 | 0.6519 |
| 0.73 | 14.2 | 3750 | 0.6403 |
| 0.8306 | 14.39 | 3800 | 0.6393 |
| 0.8678 | 14.58 | 3850 | 0.6405 |
| 1.0003 | 14.77 | 3900 | 0.6407 |
| 1.023 | 14.96 | 3950 | 0.6402 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.0
|