--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5542 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0241 | 1.0 | 112 | 1.9155 | 0.4 | | 1.5443 | 2.0 | 225 | 1.2937 | 0.65 | | 1.1134 | 3.0 | 337 | 0.9665 | 0.71 | | 0.7215 | 4.0 | 450 | 0.8201 | 0.74 | | 0.4679 | 5.0 | 562 | 0.7616 | 0.75 | | 0.3626 | 6.0 | 675 | 0.5217 | 0.85 | | 0.1775 | 7.0 | 787 | 0.6748 | 0.81 | | 0.1642 | 8.0 | 900 | 0.5287 | 0.86 | | 0.0772 | 9.0 | 1012 | 0.5632 | 0.84 | | 0.0478 | 10.0 | 1125 | 0.5576 | 0.85 | | 0.0662 | 11.0 | 1237 | 0.5455 | 0.88 | | 0.0446 | 11.95 | 1344 | 0.5542 | 0.87 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2