update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: mit
|
5 |
+
base_model: microsoft/speecht5_tts
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- speechbrain/spkrec-xvect-voxceleb
|
10 |
+
model-index:
|
11 |
+
- name: speecht5_finetuned_voxpopuli_en
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# speecht5_finetuned_voxpopuli_en
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the speechbrain/spkrec-xvect-voxceleb dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4466
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-06
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 1500
|
50 |
+
- training_steps: 12000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
56 |
+
| 0.5271 | 1.58 | 1000 | 0.4843 |
|
57 |
+
| 0.5025 | 3.15 | 2000 | 0.4648 |
|
58 |
+
| 0.4947 | 4.73 | 3000 | 0.4575 |
|
59 |
+
| 0.4857 | 6.3 | 4000 | 0.4543 |
|
60 |
+
| 0.487 | 7.88 | 5000 | 0.4519 |
|
61 |
+
| 0.4804 | 9.46 | 6000 | 0.4494 |
|
62 |
+
| 0.4798 | 11.03 | 7000 | 0.4487 |
|
63 |
+
| 0.4813 | 12.61 | 8000 | 0.4478 |
|
64 |
+
| 0.4831 | 14.18 | 9000 | 0.4476 |
|
65 |
+
| 0.4751 | 15.76 | 10000 | 0.4468 |
|
66 |
+
| 0.4795 | 17.34 | 11000 | 0.4463 |
|
67 |
+
| 0.474 | 18.91 | 12000 | 0.4466 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.32.0.dev0
|
73 |
+
- Pytorch 1.13.1
|
74 |
+
- Datasets 2.13.1
|
75 |
+
- Tokenizers 0.13.2
|