File size: 2,359 Bytes
9763b71 c74b636 9763b71 c74b636 9763b71 c74b636 9763b71 c74b636 9763b71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: gemma
base_model: vidore/colpaligemma-3b-pt-448-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: finetune_colpali_v1_2-german-4bit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_colpali_v1_2-german-4bit
This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the German_docx dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1100
- Model Preparation Time: 0.008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|
| No log | 0.0533 | 1 | 0.3717 | 0.008 |
| 1.1358 | 0.5333 | 10 | 0.3356 | 0.008 |
| 1.2182 | 1.0667 | 20 | 0.2811 | 0.008 |
| 0.844 | 1.6 | 30 | 0.2365 | 0.008 |
| 0.7722 | 2.1333 | 40 | 0.1990 | 0.008 |
| 0.4823 | 2.6667 | 50 | 0.1758 | 0.008 |
| 0.46 | 3.2 | 60 | 0.1451 | 0.008 |
| 0.1477 | 3.7333 | 70 | 0.1252 | 0.008 |
| 0.1764 | 4.2667 | 80 | 0.1258 | 0.008 |
| 0.2329 | 4.8 | 90 | 0.1100 | 0.008 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1
- Datasets 3.1.0
- Tokenizers 0.20.1
|