File size: 2,193 Bytes
4848e96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-news-summary-kaggle
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-news-summary-kaggle

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6907
- Rouge1: 26.6547
- Rouge2: 10.1
- Rougel: 24.0137
- Rougelsum: 23.9999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| No log        | 1.0   | 220  | 3.9956          | 14.9021 | 3.3744 | 13.4763 | 13.499    |
| 8.3183        | 2.0   | 440  | 3.1550          | 17.9472 | 5.9671 | 16.6974 | 16.6959   |
| 8.3183        | 3.0   | 660  | 2.8950          | 21.2665 | 7.4266 | 19.5041 | 19.4837   |
| 4.0457        | 4.0   | 880  | 2.8087          | 25.063  | 9.4484 | 22.746  | 22.7351   |
| 4.0457        | 5.0   | 1100 | 2.7375          | 25.5269 | 9.4299 | 23.0623 | 23.0075   |
| 3.6505        | 6.0   | 1320 | 2.7091          | 25.8308 | 9.3392 | 23.2001 | 23.1586   |
| 3.6505        | 7.0   | 1540 | 2.6949          | 26.2177 | 9.8536 | 23.5946 | 23.6358   |
| 3.5175        | 8.0   | 1760 | 2.6907          | 26.6547 | 10.1   | 24.0137 | 23.9999   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2