import gradio as gr from tensorflow.keras.models import load_model import numpy as np from PIL import Image # Load model from Hugging Face model repository model = load_model("https://huggingface.co/syaha/skin_cancer_detection_model/resolve/main/skin_cancer_detection_model.h5") # Preprocess function def preprocess_image(image): image = image.resize((224, 224)) # Resize to match model input size image = np.array(image) / 255.0 # Normalize image = np.expand_dims(image, axis=0) # Add batch dimension return image # Predict function def predict_image(image): img = preprocess_image(image) prediction = model.predict(img) predicted_class = np.argmax(prediction, axis=1)[0] class_label = disease_info[predicted_class]['name'] description = disease_info[predicted_class]['description'] return f"Prediction: {class_label}\nDescription: {description}" # Disease information mapping disease_info = { 0: {'name': 'Actinic Keratoses (akiec)', 'description': 'Rough, scaly patches caused by sun exposure.'}, 1: {'name': 'Basal Cell Carcinoma (bcc)', 'description': 'A type of skin cancer that rarely spreads.'}, 2: {'name': 'Benign Keratosis (bkl)', 'description': 'Non-cancerous skin lesions.'}, 3: {'name': 'Dermatofibroma (df)', 'description': 'A benign lesion often on the legs.'}, 4: {'name': 'Melanocytic Nevus (nv)', 'description': 'Common mole, can develop into melanoma.'}, 5: {'name': 'Vascular Lesions (vasc)', 'description': 'Blood vessel-related skin growths.'}, 6: {'name': 'Melanoma (mel)', 'description': 'Most dangerous skin cancer, early detection is key.'} } # Gradio interface iface = gr.Interface(fn=predict_image, inputs="image", outputs="text") iface.launch()