File size: 1,678 Bytes
aa9810a
e061483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9810a
 
 
 
 
 
 
 
347f576
aa9810a
347f576
f3bad0b
aa9810a
 
 
 
 
 
 
 
 
 
 
7a58444
 
 
 
 
 
 
 
 
aa9810a
7a58444
 
aa9810a
7a58444
aa9810a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language:
- ar
- bg
- de
- el
- en
- es
- fr
- ru
- th
- tr
- ur
- vn
- zh
- multilingual
tags:
- zero-shot-classification
datasets:
- SNLI
- MNLI
- ANLI
- XNLI
---


A cross-attention NLI model trained for zero-shot and few-shot text classification.

The base model is [xlm-roberta-base](https://huggingface.co/xlm-roberta-base), trained with the code from [here](https://github.com/facebookresearch/anli);
on [SNLI](https://nlp.stanford.edu/projects/snli/), [MNLI](https://cims.nyu.edu/~sbowman/multinli/), [ANLI](https://github.com/facebookresearch/anli) and [XNLI](https://github.com/facebookresearch/XNLI).

Usage:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np

model = AutoModelForSequenceClassification.from_pretrained("symanto/xlm-roberta-base-snli-mnli-anli-xnli")
tokenizer = AutoTokenizer.from_pretrained("symanto/xlm-roberta-base-snli-mnli-anli-xnli")

input_pairs = [
               ("I like this pizza.", "The sentence is positive."),
               ("I like this pizza.", "The sentence is negative."),
               ("I mag diese Pizza.", "Der Satz ist positiv."),
               ("I mag diese Pizza.", "Der Satz ist negativ."),
               ("Me gusta esta pizza.", "Esta frase es positivo."),
               ("Me gusta esta pizza.", "Esta frase es negativo."),
]
inputs = tokenizer(input_pairs, truncation="only_first", return_tensors="pt", padding=True)
logits = model(**inputs).logits
probs = torch.softmax(logits, dim=1)
probs = probs[..., [0]].tolist()
print("probs", probs)
np.testing.assert_almost_equal(probs, [[0.83], [0.04], [1.00], [0.00], [1.00], [0.00]], decimal=2)
```