File size: 2,028 Bytes
96c6007 d9697c9 96c6007 d9697c9 96c6007 d9697c9 96c6007 71bf354 96c6007 d9697c9 96c6007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-base-patch4-window7-224-in22k-Kontur-competition-1.3K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-patch4-window7-224-in22k-Kontur-competition-1.3K
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0036
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0593 | 0.99 | 55 | 0.0294 |
| 0.0098 | 1.99 | 111 | 0.0315 |
| 0.0066 | 3.0 | 167 | 0.0322 |
| 0.0179 | 4.0 | 223 | 0.0068 |
| 0.0078 | 4.99 | 278 | 0.0033 |
| 0.0015 | 5.99 | 334 | 0.0008 |
| 0.0017 | 7.0 | 390 | 0.0078 |
| 0.0008 | 8.0 | 446 | 0.0027 |
| 0.0019 | 8.99 | 501 | 0.0011 |
| 0.0014 | 9.87 | 550 | 0.0036 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|