--- license: mit datasets: - Jumtra/oasst1_ja - Jumtra/jglue_jsquads_with_input - Jumtra/dolly_oast_jglue_ja - Aruno/guanaco_jp - yahma/alpaca-cleaned - databricks/databricks-dolly-15k language: - en - ja --- # Usage: To use in code: ```python import torch import peft from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained( "decapoda-research/llama-7b-hf" ) model = LlamaForCausalLM.from_pretrained( "tamdiep106/alpaca_lora_ja_en_emb-7b", load_in_8bit=False, device_map="auto", torch_dtype=torch.float16 ) tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token tokenizer.bos_token_id = 1 tokenizer.eos_token_id = 2 ``` To try out this model, use this colab space https://colab.research.google.com/drive/1kVcN0L_n5lwhFlIqDkNbLNURboifgbBO?usp=sharing Japanese prompt: ```python instruction_input_JP = 'あなたはアシスタントです。以下に、タスクを説明する指示と、さらなるコンテキストを提供する入力を組み合わせます。 リクエストを適切に完了するレスポンスを作成します。' instruction_no_input_JP = 'あなたはアシスタントです。以下はタスクを説明する指示です。 リクエストを適切に完了するレスポンスを作成します。' prompt = """{} ### Instruction: {} ### Response:""" if input=='': prompt = prompt.format( instruction_no_input_JP, instruction ) else: prompt = prompt.format("{}\n\n### input:\n{}""").format( instruction_input_JP, instruction, input ) ``` English prompt: ```python instruction_input_EN = 'You are an Assistant, below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.' instruction_no_input_EN = 'You are an Assistant, below is an instruction that describes a task. Write a response that appropriately completes the request.' prompt = """{} ### Instruction: {} ### Response:""" instruction = "4 + 4 = ?" #@param {type:"string"} input = "" #@param {type:"string"} if input=='': prompt = prompt.format( instruction_no_input_EN, instruction ) else: prompt = prompt.format("{}\n\n### input:\n{}""").format( instruction_input_EN, instruction, input ) ``` Use this code to decode output of model ```python for s in generation_output.sequences: result = tokenizer.decode(s).strip() result = result.replace(prompt, '') result = result.replace("", "") result = result.replace("", "") if result=='': print('No output') print(prompt) print(result) continue print('\nResponse: ') print(result) ``` # Training: