--- license: apache-2.0 base_model: GanjinZero/biobart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-BioBART-20-epochs-1500-input-256-output results: [] --- # fine-tuned-BioBART-20-epochs-1500-input-256-output This model is a fine-tuned version of [GanjinZero/biobart-base](https://huggingface.co/GanjinZero/biobart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9257 - Rouge1: 0.1655 - Rouge2: 0.0291 - Rougel: 0.1256 - Rougelsum: 0.1266 - Gen Len: 34.62 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 151 | 6.1052 | 0.0511 | 0.0 | 0.047 | 0.0474 | 22.48 | | No log | 2.0 | 302 | 1.1483 | 0.077 | 0.0156 | 0.0673 | 0.0678 | 11.56 | | No log | 3.0 | 453 | 0.9767 | 0.0744 | 0.0182 | 0.0537 | 0.0557 | 23.57 | | 4.0217 | 4.0 | 604 | 0.9160 | 0.1355 | 0.033 | 0.1053 | 0.1042 | 37.77 | | 4.0217 | 5.0 | 755 | 0.8850 | 0.1682 | 0.0352 | 0.1342 | 0.1342 | 41.92 | | 4.0217 | 6.0 | 906 | 0.8736 | 0.1342 | 0.0308 | 0.1037 | 0.1037 | 35.34 | | 0.761 | 7.0 | 1057 | 0.8582 | 0.144 | 0.0361 | 0.1082 | 0.1095 | 39.27 | | 0.761 | 8.0 | 1208 | 0.8551 | 0.165 | 0.0392 | 0.1233 | 0.1254 | 39.55 | | 0.761 | 9.0 | 1359 | 0.8623 | 0.141 | 0.0302 | 0.1169 | 0.1179 | 23.69 | | 0.5257 | 10.0 | 1510 | 0.8642 | 0.1715 | 0.0436 | 0.1249 | 0.1267 | 45.78 | | 0.5257 | 11.0 | 1661 | 0.8705 | 0.1702 | 0.0331 | 0.1386 | 0.1385 | 30.28 | | 0.5257 | 12.0 | 1812 | 0.8761 | 0.169 | 0.035 | 0.1247 | 0.1254 | 42.74 | | 0.5257 | 13.0 | 1963 | 0.8938 | 0.1719 | 0.0376 | 0.139 | 0.1389 | 29.73 | | 0.368 | 14.0 | 2114 | 0.8907 | 0.1716 | 0.0402 | 0.1371 | 0.1377 | 36.07 | | 0.368 | 15.0 | 2265 | 0.9027 | 0.1677 | 0.0324 | 0.1329 | 0.134 | 36.82 | | 0.368 | 16.0 | 2416 | 0.9141 | 0.16 | 0.0322 | 0.1268 | 0.1281 | 32.87 | | 0.2635 | 17.0 | 2567 | 0.9177 | 0.1702 | 0.0324 | 0.1312 | 0.1323 | 35.4 | | 0.2635 | 18.0 | 2718 | 0.9194 | 0.1713 | 0.0333 | 0.1297 | 0.1312 | 37.75 | | 0.2635 | 19.0 | 2869 | 0.9234 | 0.1693 | 0.0294 | 0.1293 | 0.1299 | 35.69 | | 0.2141 | 20.0 | 3020 | 0.9257 | 0.1655 | 0.0291 | 0.1256 | 0.1266 | 34.62 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0