Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: openai/clip-vit-large-patch14-336
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-mnist
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-mnist
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0173
|
21 |
+
- Accuracy: 0.9945
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 10
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.4739 | 1.0 | 422 | 0.1506 | 0.9578 |
|
56 |
+
| 0.4608 | 2.0 | 844 | 0.0464 | 0.9857 |
|
57 |
+
| 0.3125 | 3.0 | 1266 | 0.0406 | 0.9878 |
|
58 |
+
| 0.3281 | 4.0 | 1688 | 0.0328 | 0.9895 |
|
59 |
+
| 0.3068 | 5.0 | 2110 | 0.0230 | 0.9933 |
|
60 |
+
| 0.3187 | 6.0 | 2532 | 0.0254 | 0.9918 |
|
61 |
+
| 0.2928 | 7.0 | 2954 | 0.0286 | 0.99 |
|
62 |
+
| 0.2336 | 8.0 | 3376 | 0.0296 | 0.9908 |
|
63 |
+
| 0.2472 | 9.0 | 3798 | 0.0217 | 0.994 |
|
64 |
+
| 0.2356 | 10.0 | 4220 | 0.0173 | 0.9945 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.44.2
|
70 |
+
- Pytorch 2.4.0+cu121
|
71 |
+
- Datasets 2.21.0
|
72 |
+
- Tokenizers 0.19.1
|