--- library_name: transformers base_model: openai/clip-vit-large-patch14 tags: - generated_from_trainer metrics: - accuracy model-index: - name: clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe results: [] --- # clip-vit-large-patch14-finetuned-clip-vit-large-patch14-mnist_linear_probe This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9687 - Accuracy: 0.9137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.4414 | 0.9953 | 105 | 2.3838 | 0.102 | | 2.2431 | 2.0 | 211 | 2.2100 | 0.2698 | | 2.1251 | 2.9953 | 316 | 2.0662 | 0.4987 | | 2.0119 | 4.0 | 422 | 1.9232 | 0.6905 | | 1.9134 | 4.9953 | 527 | 1.8080 | 0.7645 | | 1.8314 | 6.0 | 633 | 1.7059 | 0.8053 | | 1.7816 | 6.9953 | 738 | 1.6175 | 0.8215 | | 1.7076 | 8.0 | 844 | 1.5373 | 0.845 | | 1.6632 | 8.9953 | 949 | 1.4675 | 0.8592 | | 1.6188 | 10.0 | 1055 | 1.4062 | 0.863 | | 1.5606 | 10.9953 | 1160 | 1.3510 | 0.8718 | | 1.5185 | 12.0 | 1266 | 1.3031 | 0.8718 | | 1.5007 | 12.9953 | 1371 | 1.2591 | 0.881 | | 1.4573 | 14.0 | 1477 | 1.2201 | 0.8833 | | 1.4474 | 14.9953 | 1582 | 1.1841 | 0.8875 | | 1.4308 | 16.0 | 1688 | 1.1524 | 0.8925 | | 1.4091 | 16.9953 | 1793 | 1.1246 | 0.8943 | | 1.3683 | 18.0 | 1899 | 1.0986 | 0.8985 | | 1.365 | 18.9953 | 2004 | 1.0752 | 0.9042 | | 1.3635 | 20.0 | 2110 | 1.0563 | 0.9033 | | 1.3422 | 20.9953 | 2215 | 1.0389 | 0.9043 | | 1.3248 | 22.0 | 2321 | 1.0231 | 0.9083 | | 1.2961 | 22.9953 | 2426 | 1.0100 | 0.9093 | | 1.3136 | 24.0 | 2532 | 0.9986 | 0.9107 | | 1.3067 | 24.9953 | 2637 | 0.9897 | 0.911 | | 1.2984 | 26.0 | 2743 | 0.9818 | 0.9115 | | 1.3045 | 26.9953 | 2848 | 0.9759 | 0.9132 | | 1.291 | 28.0 | 2954 | 0.9717 | 0.9132 | | 1.2731 | 28.9953 | 3059 | 0.9692 | 0.9142 | | 1.3034 | 29.8578 | 3150 | 0.9687 | 0.9137 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1