File size: 8,114 Bytes
7671dfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import cv2
import tritonclient.http as httpclient
SAVE_INTERMEDIATE_IMAGES = False
def detection_preprocessing(image: cv2.Mat) -> np.ndarray:
inpWidth = 640
inpHeight = 480
# pre-process image
blob = cv2.dnn.blobFromImage(
image, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False
)
blob = np.transpose(blob, (0, 2, 3, 1))
return blob
def detection_postprocessing(scores, geometry, preprocessed_image):
def fourPointsTransform(frame, vertices):
vertices = np.asarray(vertices)
outputSize = (100, 32)
targetVertices = np.array(
[
[0, outputSize[1] - 1],
[0, 0],
[outputSize[0] - 1, 0],
[outputSize[0] - 1, outputSize[1] - 1],
],
dtype="float32",
)
rotationMatrix = cv2.getPerspectiveTransform(vertices, targetVertices)
result = cv2.warpPerspective(frame, rotationMatrix, outputSize)
return result
def decodeBoundingBoxes(scores, geometry, scoreThresh=0.5):
detections = []
confidences = []
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ########
assert len(scores.shape) == 4, "Incorrect dimensions of scores"
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry"
assert scores.shape[0] == 1, "Invalid dimensions of scores"
assert geometry.shape[0] == 1, "Invalid dimensions of geometry"
assert scores.shape[1] == 1, "Invalid dimensions of scores"
assert geometry.shape[1] == 5, "Invalid dimensions of geometry"
assert (
scores.shape[2] == geometry.shape[2]
), "Invalid dimensions of scores and geometry"
assert (
scores.shape[3] == geometry.shape[3]
), "Invalid dimensions of scores and geometry"
height = scores.shape[2]
width = scores.shape[3]
for y in range(0, height):
# Extract data from scores
scoresData = scores[0][0][y]
x0_data = geometry[0][0][y]
x1_data = geometry[0][1][y]
x2_data = geometry[0][2][y]
x3_data = geometry[0][3][y]
anglesData = geometry[0][4][y]
for x in range(0, width):
score = scoresData[x]
# If score is lower than threshold score, move to next x
if score < scoreThresh:
continue
# Calculate offset
offsetX = x * 4.0
offsetY = y * 4.0
angle = anglesData[x]
# Calculate cos and sin of angle
cosA = math.cos(angle)
sinA = math.sin(angle)
h = x0_data[x] + x2_data[x]
w = x1_data[x] + x3_data[x]
# Calculate offset
offset = [
offsetX + cosA * x1_data[x] + sinA * x2_data[x],
offsetY - sinA * x1_data[x] + cosA * x2_data[x],
]
# Find points for rectangle
p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1]))
detections.append((center, (w, h), -1 * angle * 180.0 / math.pi))
confidences.append(float(score))
# Return detections and confidences
return [detections, confidences]
scores = scores.transpose(0, 3, 1, 2)
geometry = geometry.transpose(0, 3, 1, 2)
frame = np.squeeze(preprocessed_image, axis=0)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
[boxes, confidences] = decodeBoundingBoxes(scores, geometry)
indices = cv2.dnn.NMSBoxesRotated(boxes, confidences, 0.5, 0.4)
cropped_list = []
cv2.imwrite("frame.png", frame)
count = 0
for i in indices:
# get 4 corners of the rotated rect
count += 1
vertices = cv2.boxPoints(boxes[i])
cropped = fourPointsTransform(frame, vertices)
cv2.imwrite(str(count) + ".png", cropped)
cropped = np.expand_dims(cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY), axis=0)
cropped_list.append(((cropped / 255.0) - 0.5) * 2)
cropped_arr = np.stack(cropped_list, axis=0)
# Only keep the first image, since the models don't currently allow batching.
# See part 2 for enabling batch sizes > 0
return cropped_arr[None, 0]
def recognition_postprocessing(scores: np.ndarray) -> str:
text = ""
alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"
scores = np.transpose(scores, (1,0,2))
for i in range(scores.shape[0]):
c = np.argmax(scores[i][0])
if c != 0:
text += alphabet[c - 1]
else:
text += "-"
# adjacent same letters as well as background text must be removed
# to get the final output
char_list = []
for i, char in enumerate(text):
if char != "-" and (not (i > 0 and char == text[i - 1])):
char_list.append(char)
return "".join(char_list)
if __name__ == "__main__":
# Setting up client
client = httpclient.InferenceServerClient(url="localhost:8000")
# Read image and create input object
raw_image = cv2.imread("./img1.jpg")
preprocessed_image = detection_preprocessing(raw_image)
detection_input = httpclient.InferInput(
"input_images:0", preprocessed_image.shape, datatype="FP32"
)
detection_input.set_data_from_numpy(preprocessed_image, binary_data=True)
# Query the server
detection_response = client.infer(
model_name="text_detection", inputs=[detection_input]
)
# Process responses from detection model
scores = detection_response.as_numpy("feature_fusion/Conv_7/Sigmoid:0")
geometry = detection_response.as_numpy("feature_fusion/concat_3:0")
cropped_images = detection_postprocessing(scores, geometry, preprocessed_image)
# Create input object for recognition model
recognition_input = httpclient.InferInput(
"input.1", cropped_images.shape, datatype="FP32"
)
recognition_input.set_data_from_numpy(cropped_images, binary_data=True)
# Query the server
recognition_response = client.infer(
model_name="text_recognition", inputs=[recognition_input]
)
# Process response from recognition model
final_text = recognition_postprocessing(recognition_response.as_numpy("308"))
print(final_text)
|