mtasic85 commited on
Commit
54b95ae
1 Parent(s): 2136103

train model

Browse files
.gitignore ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ---> Python
2
+ # Byte-compiled / optimized / DLL files
3
+ __pycache__/
4
+ *.py[cod]
5
+ *$py.class
6
+
7
+ # C extensions
8
+ *.so
9
+
10
+ # Distribution / packaging
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+ cover/
54
+
55
+ # Translations
56
+ *.mo
57
+ *.pot
58
+
59
+ # Django stuff:
60
+ *.log
61
+ local_settings.py
62
+ db.sqlite3
63
+ db.sqlite3-journal
64
+
65
+ # Flask stuff:
66
+ instance/
67
+ .webassets-cache
68
+
69
+ # Scrapy stuff:
70
+ .scrapy
71
+
72
+ # Sphinx documentation
73
+ docs/_build/
74
+
75
+ # PyBuilder
76
+ .pybuilder/
77
+ target/
78
+
79
+ # Jupyter Notebook
80
+ .ipynb_checkpoints
81
+
82
+ # IPython
83
+ profile_default/
84
+ ipython_config.py
85
+
86
+ # pyenv
87
+ # For a library or package, you might want to ignore these files since the code is
88
+ # intended to run in multiple environments; otherwise, check them in:
89
+ # .python-version
90
+
91
+ # pipenv
92
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
93
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
94
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
95
+ # install all needed dependencies.
96
+ #Pipfile.lock
97
+
98
+ # poetry
99
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
100
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
101
+ # commonly ignored for libraries.
102
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
103
+ #poetry.lock
104
+
105
+ # pdm
106
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
107
+ #pdm.lock
108
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
109
+ # in version control.
110
+ # https://pdm.fming.dev/#use-with-ide
111
+ .pdm.toml
112
+
113
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
114
+ __pypackages__/
115
+
116
+ # Celery stuff
117
+ celerybeat-schedule
118
+ celerybeat.pid
119
+
120
+ # SageMath parsed files
121
+ *.sage.py
122
+
123
+ # Environments
124
+ .env
125
+ .venv
126
+ env/
127
+ venv/
128
+ ENV/
129
+ env.bak/
130
+ venv.bak/
131
+
132
+ # Spyder project settings
133
+ .spyderproject
134
+ .spyproject
135
+
136
+ # Rope project settings
137
+ .ropeproject
138
+
139
+ # mkdocs documentation
140
+ /site
141
+
142
+ # mypy
143
+ .mypy_cache/
144
+ .dmypy.json
145
+ dmypy.json
146
+
147
+ # Pyre type checker
148
+ .pyre/
149
+
150
+ # pytype static type analyzer
151
+ .pytype/
152
+
153
+ # Cython debug symbols
154
+ cython_debug/
155
+
156
+ # PyCharm
157
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
158
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
159
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
160
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
161
+ .idea/
162
+
163
+ .DS_Store
164
+ .ruff_cache
165
+ venv*/
README.md CHANGED
@@ -1,3 +1,25 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ language: ['en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu']
6
+ datasets: [
7
+ 'bigcode/programming-languages-keywords',
8
+ 'bigcode/the-stack-smol-xs',
9
+ 'nampdn-ai/tiny-textbooks',
10
+ 'xu-song/cc100-samples',
11
+ 'm-a-p/CodeFeedback-Filtered-Instruction',
12
+ 'nampdn-ai/tiny-codes',
13
+ 'ajibawa-2023/Maths-College',
14
+ 'microsoft/orca-math-word-problems-200k',
15
+ 'mlabonne/FineTome-100k',
16
+ 'arcee-ai/agent-data',
17
+ 'cognitivecomputations/SystemChat-2.0',
18
+ 'badrex/llm-emoji-dataset',
19
+ ]
20
+ tags:
21
+ - litgpt
22
+ - litdata
23
  ---
24
+
25
+ # tangled-llama-x-32k-base-v0.1
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
scripts/TRAIN.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Train
2
+
3
+ ## Tokenizer
4
+
5
+ ```bash
6
+ cd scripts
7
+ python -m venv venv
8
+ source venv/bin/activate
9
+ pip install -U -r requirements.in
10
+ ```
11
+
12
+ ```bash
13
+ python -B train_tokenizer.py
14
+ ```
15
+
16
+ ## Dataset
17
+
18
+ ```bash
19
+ cd scripts
20
+ python -m venv venv-lit
21
+ source venv-lit/bin/activate
22
+ pip install -U -r requirements-lit.in
23
+ ```
24
+
25
+ ```bash
26
+ python -B prepare_pretrain_dataset.py
27
+ ```
28
+
29
+ ## Model
30
+
31
+ ```bash
32
+ cd scripts
33
+ python -m venv venv-lit
34
+ source venv-lit/bin/activate
35
+ pip install -U -r requirements-lit.in
36
+ ```
37
+
38
+ ```bash
39
+ litgpt pretrain --config ./model.yaml
40
+ ```
scripts/model.yaml ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
2
+ # ``model_config``. (type: Optional[str], default: null)
3
+ model_name: "tiny-llama-1.1b"
4
+
5
+ # A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
6
+ # ``model_config``. (type: Optional[Config], default: null)
7
+ model_config:
8
+ padded_vocab_size: 32768
9
+ vocab_size: 32768
10
+ block_size: 32768
11
+ n_layer: 12
12
+ n_head: 32
13
+ head_size: null
14
+ n_embd: 1024
15
+ n_query_groups: 8
16
+ rotary_percentage: 1.0
17
+ parallel_residual: false
18
+ bias: false
19
+ norm_class_name: "RMSNorm"
20
+ norm_eps: 1e-05
21
+ mlp_class_name: "LLaMAMLP"
22
+ intermediate_size: 4096
23
+ rope_base: 500000
24
+
25
+ # Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
26
+ # /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
27
+ out_dir: "../out/pretrain/"
28
+
29
+ # The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
30
+ # precision: bf16-mixed
31
+ precision: bf16-true
32
+
33
+ # Optional path to a checkpoint directory to initialize the model from.
34
+ # Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
35
+ initial_checkpoint_dir:
36
+
37
+ # Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
38
+ # from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
39
+ # ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
40
+ # (type: Union[bool, Literal["auto"], Path], default: False)
41
+ # resume: false
42
+ resume: "auto"
43
+
44
+ # Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
45
+ data:
46
+ class_path: LitData
47
+
48
+ init_args:
49
+ data_path: "../data/"
50
+ num_workers: 16
51
+ # num_workers: 3
52
+
53
+ # Training-related arguments. See ``litgpt.args.TrainArgs`` for details
54
+ train:
55
+ # Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
56
+ save_interval: 1000
57
+
58
+ # Number of iterations between logging calls (type: int, default: 1)
59
+ log_interval: 1
60
+
61
+ # Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512)
62
+ global_batch_size: 512
63
+
64
+ # Number of samples per data-parallel rank (type: int, default: 4)
65
+ micro_batch_size: 16
66
+ # micro_batch_size: 14
67
+
68
+ # Number of iterations with learning rate warmup active (type: int, default: 2000)
69
+ lr_warmup_steps: 2000
70
+
71
+ # Number of epochs to train on (type: Optional[int], default: null)
72
+ epochs:
73
+
74
+ # Total number of tokens to train on (type: Optional[int], default: 3000000000000)
75
+ # max_tokens: 3000000000000
76
+ max_tokens: 9782206713 # 1591379 * 2049 * 3
77
+
78
+ # Limits the number of optimizer steps to run. (type: Optional[int], default: null)
79
+ max_steps:
80
+
81
+ # Limits the length of samples. Off by default (type: Optional[int], default: null)
82
+ max_seq_length: 2048
83
+
84
+ # Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
85
+ tie_embeddings:
86
+
87
+ # (type: Optional[float], default: 1.0)
88
+ max_norm: 1.0
89
+
90
+ # (type: float, default: 4e-05)
91
+ min_lr: 4.0e-05
92
+
93
+ # Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
94
+ eval:
95
+ # Number of optimizer steps between evaluation calls (type: int, default: 1000)
96
+ interval: 1000
97
+
98
+ # Number of tokens to generate (type: Optional[int], default: null)
99
+ max_new_tokens:
100
+
101
+ # Number of iterations (type: int, default: 100)
102
+ max_iters: 100
103
+
104
+ # Whether to evaluate on the validation set at the beginning of the training
105
+ initial_validation: false
106
+
107
+ # Whether to evaluate on the validation set at the end the training
108
+ final_validation: false
109
+
110
+ # Optimizer-related arguments
111
+ optimizer:
112
+ # class_path: torch.optim.AdamW
113
+ class_path: grokadamw.GrokAdamW
114
+ # class_path: bitsandbytes.optim.AdamW8bit
115
+ # class_path: bitsandbytes.optim.PagedAdamW8bit
116
+
117
+ init_args:
118
+ # (type: float, default: 0.001)
119
+ lr: 5e-5
120
+
121
+ # (type: float, default: 0.01)
122
+ weight_decay: 0.1
123
+
124
+ # (type: tuple, default: (0.9,0.999))
125
+ betas:
126
+ - 0.9
127
+ - 0.95
128
+
129
+ # How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
130
+ devices: auto
131
+
132
+ # How many nodes to use. (type: int, default: 1)
133
+ num_nodes: 1
134
+
135
+ # Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
136
+ # module require this. (type: Optional[Path], default: null)
137
+ tokenizer_dir: "../"
138
+
139
+ # The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
140
+ logger_name: "wandb"
141
+
142
+ # The random seed to use for reproducibility. (type: int, default: 42)
143
+ seed: 42
scripts/prepare_pretrain_dataset.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+
3
+ from datasets import load_dataset
4
+ from litdata import optimize, TokensLoader
5
+ from litgpt.tokenizer import Tokenizer
6
+ from functools import partial
7
+
8
+
9
+ def batch_iterator(name=None):
10
+ # code
11
+ if name in (None, 'bigcode/programming-languages-keywords'):
12
+ dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
13
+
14
+ for row in dataset:
15
+ for n in row['keywords']:
16
+ yield n
17
+
18
+ del dataset
19
+ gc.collect()
20
+
21
+ # code
22
+ if name in (None, 'bigcode/the-stack-smol-xs'):
23
+ dataset = (
24
+ load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
25
+ for lang in [
26
+ 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
27
+ 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
28
+ 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
29
+ 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
30
+ 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
31
+ 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
32
+ 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
33
+ 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
34
+ ]
35
+ )
36
+
37
+ for d in dataset:
38
+ for row in d:
39
+ yield row['content']
40
+
41
+ del dataset
42
+ gc.collect()
43
+
44
+ # text
45
+ if name in (None, 'nampdn-ai/tiny-textbooks'):
46
+ dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
47
+
48
+ for row in dataset:
49
+ yield row['text']
50
+
51
+ del dataset
52
+ gc.collect()
53
+
54
+ # text
55
+ if name in (None, 'xu-song/cc100-samples'):
56
+ dataset = (
57
+ load_dataset('xu-song/cc100-samples', lang, split='train')
58
+ for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
59
+ )
60
+
61
+ for d in dataset:
62
+ for row in d['text']:
63
+ yield row
64
+
65
+ del dataset
66
+ gc.collect()
67
+
68
+ # code
69
+ if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'):
70
+ dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
71
+
72
+ for row in dataset:
73
+ yield row['query'] + '\n' + row['answer']
74
+
75
+ del dataset
76
+ gc.collect()
77
+
78
+ # code
79
+ if name in (None, 'nampdn-ai/tiny-codes'):
80
+ dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
81
+
82
+ for row in dataset:
83
+ yield row['prompt'] + '\n' + row['response']
84
+
85
+ del dataset
86
+ gc.collect()
87
+
88
+ # math
89
+ if name in (None, 'ajibawa-2023/Maths-College'):
90
+ dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
91
+
92
+ for row in dataset:
93
+ yield row['instruction'] + '\n' + row['output']
94
+
95
+ del dataset
96
+ gc.collect()
97
+
98
+ # math
99
+ if name in (None, 'microsoft/orca-math-word-problems-200k'):
100
+ dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
101
+
102
+ for row in dataset:
103
+ yield row['question'] + '\n' + row['answer']
104
+
105
+ del dataset
106
+ gc.collect()
107
+
108
+ # text
109
+ if name in (None, 'mlabonne/FineTome-100k'):
110
+ dataset = load_dataset('mlabonne/FineTome-100k', split='train')
111
+
112
+ for row in dataset['conversations']:
113
+ yield '\n'.join(n['value'] for n in row)
114
+
115
+ del dataset
116
+ gc.collect()
117
+
118
+ # instruction
119
+ if name in (None, 'arcee-ai/agent-data'):
120
+ dataset = load_dataset('arcee-ai/agent-data', split='train')
121
+
122
+ for row in dataset['conversations']:
123
+ yield '\n'.join(n['value'] for n in row)
124
+
125
+ del dataset
126
+ gc.collect()
127
+
128
+ # instruction
129
+ if name in (None, 'cognitivecomputations/SystemChat-2.0'):
130
+ dataset = (
131
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
132
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
133
+ )
134
+
135
+ for d in dataset:
136
+ for row in d['messages']:
137
+ yield '\n'.join(n['content'] for n in row)
138
+
139
+ del dataset
140
+ gc.collect()
141
+
142
+ # emoji
143
+ if name in (None, 'badrex/llm-emoji-dataset'):
144
+ dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
145
+
146
+ for row in dataset:
147
+ yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
148
+
149
+ del dataset
150
+ gc.collect()
151
+
152
+
153
+ def tokenize_fn(dataset_name, tokenizer=None):
154
+ for text in batch_iterator(dataset_name):
155
+ text_ids = tokenizer.encode(text, bos=False, eos=True)
156
+ yield text_ids
157
+
158
+ datasets_names = [
159
+ 'bigcode/programming-languages-keywords',
160
+ 'bigcode/the-stack-smol-xs',
161
+ 'nampdn-ai/tiny-textbooks',
162
+ 'xu-song/cc100-samples',
163
+ 'm-a-p/CodeFeedback-Filtered-Instruction',
164
+ 'nampdn-ai/tiny-codes',
165
+ 'ajibawa-2023/Maths-College',
166
+ 'microsoft/orca-math-word-problems-200k',
167
+ 'mlabonne/FineTome-100k',
168
+ 'arcee-ai/agent-data',
169
+ 'cognitivecomputations/SystemChat-2.0',
170
+ 'badrex/llm-emoji-dataset',
171
+ ]
172
+
173
+ outputs = optimize(
174
+ fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
175
+ inputs=datasets_names,
176
+ output_dir='../data/',
177
+ # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
178
+ chunk_size=(2049 * 8012),
179
+ num_workers=16,
180
+ )
scripts/requirements-lit.in ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
2
+ tqdm
3
+ datasets
4
+ jinja2
5
+ transformers
6
+ bitsandbytes
7
+ wandb
8
+ # litgpt[all]
9
+ litgpt[all] @ git+https://github.com/mtasic85/litgpt.git
10
+ litdata
11
+ grokadamw
scripts/requirements.in ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ tqdm
2
+ datasets
3
+ jinja2
4
+ transformers
5
+ bitsandbytes
6
+ wandb
scripts/train_tokenizer.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import sys
3
+ # import string
4
+
5
+ from datasets import load_dataset
6
+ from transformers import PreTrainedTokenizerFast
7
+ from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders
8
+ from tokenizers.models import BPE
9
+ from tokenizers.trainers import BpeTrainer
10
+ from tokenizers.processors import TemplateProcessing
11
+
12
+
13
+ x = input('Are you sure? [y/N] ')
14
+
15
+ if x not in ('y', 'Y', 'yes'):
16
+ sys.exit(0)
17
+
18
+
19
+ def batch_iterator():
20
+ # code
21
+ dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
22
+
23
+ for row in dataset:
24
+ for n in row['keywords']:
25
+ yield n
26
+
27
+ del dataset
28
+ gc.collect()
29
+
30
+ # code
31
+ dataset = (
32
+ load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
33
+ for lang in [
34
+ 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
35
+ 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
36
+ 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
37
+ 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
38
+ 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
39
+ 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
40
+ 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
41
+ 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
42
+ ]
43
+ )
44
+
45
+ for d in dataset:
46
+ for row in d:
47
+ yield row['content']
48
+
49
+ del dataset
50
+ gc.collect()
51
+
52
+ # text
53
+ dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
54
+
55
+ for row in dataset:
56
+ yield row['text']
57
+
58
+ del dataset
59
+ gc.collect()
60
+
61
+ ## text
62
+ # dataset = (
63
+ # load_dataset('wikimedia/wikisource', lang, split='train')
64
+ # for lang in ['20231201.ar', '20231201.as', '20231201.az', '20231201.ban', '20231201.be', '20231201.bg', '20231201.bn', '20231201.br', '20231201.bs', '20231201.ca', '20231201.cs', '20231201.cy', '20231201.da', '20231201.de', '20231201.el', '20231201.en', '20231201.eo', '20231201.es', '20231201.et', '20231201.eu', '20231201.fa', '20231201.fi', '20231201.fo', '20231201.fr', '20231201.gl', '20231201.gu', '20231201.he', '20231201.hi', '20231201.hr', '20231201.hu', '20231201.hy', '20231201.id', '20231201.is', '20231201.it', '20231201.ja', '20231201.jv', '20231201.kn', '20231201.ko', '20231201.la', '20231201.li', '20231201.lij', '20231201.lt', '20231201.mk', '20231201.ml', '20231201.mr', '20231201.nap', '20231201.nl', '20231201.no', '20231201.or', '20231201.pa', '20231201.pl', '20231201.pms', '20231201.pt', '20231201.ro', '20231201.ru', '20231201.sa', '20231201.sah', '20231201.sk', '20231201.sl', '20231201.sr', '20231201.su', '20231201.sv', '20231201.ta', '20231201.te', '20231201.th', '20231201.tr', '20231201.uk', '20231201.vec', '20231201.vi', '20231201.wa', '20231201.yi', '20231201.zh', '20231201.zh-min-nan']
65
+ # )
66
+ #
67
+ # for d in dataset:
68
+ # for row in d['text']:
69
+ # yield row
70
+ #
71
+ # del dataset
72
+ # gc.collect()
73
+
74
+ # text
75
+ dataset = (
76
+ load_dataset('xu-song/cc100-samples', lang, split='train')
77
+ for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
78
+ )
79
+
80
+ for d in dataset:
81
+ for row in d['text']:
82
+ yield row
83
+
84
+ del dataset
85
+ gc.collect()
86
+
87
+ ## text
88
+ # dataset = (
89
+ # load_dataset('csebuetnlp/xlsum', lang, split='train')
90
+ # for lang in ['amharic', 'arabic', 'azerbaijani', 'bengali', 'burmese', 'chinese_simplified', 'chinese_traditional', 'english', 'french', 'gujarati', 'hausa', 'hindi', 'igbo', 'indonesian', 'japanese', 'kirundi', 'korean', 'kyrgyz', 'marathi', 'nepali', 'oromo', 'pashto', 'persian', 'pidgin', 'portuguese', 'punjabi', 'russian', 'scottish_gaelic', 'serbian_cyrillic', 'serbian_latin', 'sinhala', 'somali', 'spanish', 'swahili', 'tamil', 'telugu', 'thai', 'tigrinya', 'turkish', 'ukrainian', 'urdu', 'uzbek', 'vietnamese', 'welsh', 'yoruba']
91
+ # )
92
+ #
93
+ # for d in dataset:
94
+ # for row in d['text']:
95
+ # yield row
96
+ #
97
+ # del dataset
98
+ # gc.collect()
99
+
100
+ ## text
101
+ # dataset = load_dataset('recursal/SuperWikiNEXT-32B', split='train')
102
+ #
103
+ # for row in dataset['text']:
104
+ # yield row
105
+ #
106
+ # del dataset
107
+ # gc.collect()
108
+
109
+ # code
110
+ dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
111
+
112
+ for row in dataset:
113
+ yield row['query'] + '\n' + row['answer']
114
+
115
+ del dataset
116
+ gc.collect()
117
+
118
+ ## code
119
+ # dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
120
+ #
121
+ # for row in dataset:
122
+ # yield row['prompt'] + '\n' + row['response']
123
+ #
124
+ # del dataset
125
+ # gc.collect()
126
+
127
+ ## math
128
+ # dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
129
+ #
130
+ # for row in dataset:
131
+ # yield row['instruction'] + '\n' + row['output']
132
+ #
133
+ # del dataset
134
+ # gc.collect()
135
+
136
+ # math
137
+ dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
138
+
139
+ for row in dataset:
140
+ yield row['question'] + '\n' + row['answer']
141
+
142
+ del dataset
143
+ gc.collect()
144
+
145
+ # text
146
+ dataset = load_dataset('mlabonne/FineTome-100k', split='train')
147
+
148
+ for row in dataset['conversations']:
149
+ yield '\n'.join(n['value'] for n in row)
150
+
151
+ del dataset
152
+ gc.collect()
153
+
154
+ # instruction
155
+ dataset = load_dataset('arcee-ai/agent-data', split='train')
156
+
157
+ for row in dataset['conversations']:
158
+ yield '\n'.join(n['value'] for n in row)
159
+
160
+ del dataset
161
+ gc.collect()
162
+
163
+ # instruction
164
+ dataset = (
165
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
166
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
167
+ )
168
+
169
+ for d in dataset:
170
+ for row in d['messages']:
171
+ yield '\n'.join(n['content'] for n in row)
172
+
173
+ del dataset
174
+ gc.collect()
175
+
176
+ # emoji
177
+ dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
178
+
179
+ for row in dataset:
180
+ yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
181
+
182
+ del dataset
183
+ gc.collect()
184
+
185
+
186
+ bpe = BPE(unk_token='<unk>', fuse_unk=True, byte_fallback=True)
187
+ tokenizer = Tokenizer(bpe)
188
+
189
+ special_tokens = [
190
+ '<unk>',
191
+ '<s>',
192
+ '</s>',
193
+ '<|im_start|>',
194
+ '<|im_end|>',
195
+ 'system',
196
+ 'user',
197
+ 'assistant',
198
+ 'tool',
199
+
200
+ '<tools>',
201
+ '</tools>',
202
+ '<tool_call>',
203
+ '</tool_call>',
204
+ '<tool_response>',
205
+ '</tool_response>',
206
+
207
+ '"arguments"',
208
+ '"name"',
209
+
210
+ '<arguments>',
211
+ '</arguments>',
212
+ '<argument>',
213
+ '</argument>',
214
+ '<argument-name>',
215
+ '</argument-name>',
216
+ '<argument-type>',
217
+ '</argument-type>',
218
+ '<argument-value>',
219
+ '</argument-value>',
220
+ '<parameter>',
221
+ '</parameter>',
222
+ '<parameter-name>',
223
+ '</parameter-name>',
224
+ '<parameter-type>',
225
+ '</parameter-type>',
226
+ '<parameter-value>',
227
+ '</parameter-value>',
228
+ '<field>',
229
+ '</field>',
230
+ '<field-name>',
231
+ '</field-name>',
232
+ '<field-type>',
233
+ '</field-type>',
234
+ '<field-value>',
235
+ '</field-value>',
236
+ '<name>',
237
+ '</name>',
238
+ '<type>',
239
+ '</type>',
240
+ '<value>',
241
+ '</value>',
242
+ '<function>',
243
+ '</function>',
244
+ '<function-name>',
245
+ '</function-name>',
246
+ '<function-type>',
247
+ '</function-type>',
248
+ '<function-value>',
249
+ '</function-value>',
250
+ ]
251
+
252
+ for i in range(2, 25):
253
+ special_tokens.append(' ' * i)
254
+
255
+ for i in range(128 - len(special_tokens)):
256
+ special_tokens.append(f'<|reserved_{i}|>')
257
+
258
+ # emoji
259
+ dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
260
+ emoji_chars = [row['character'] for row in dataset if len(row['character']) == 1]
261
+ del dataset
262
+
263
+ # programming languages
264
+ dataset = load_dataset('Tanvir1337/programming-languages', split='train')
265
+ programming_languages = [n for row in dataset for n in row['text']]
266
+ del dataset
267
+
268
+ # programming languages keywords
269
+ dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
270
+ code_keywords = [n for row in dataset for n in row['keywords']]
271
+ del dataset
272
+
273
+ tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
274
+
275
+ tokenizer.post_processor = TemplateProcessing(
276
+ single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences
277
+ pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens
278
+ special_tokens=[],
279
+ )
280
+
281
+ tokenizer.decoder = decoders.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
282
+
283
+ trainer = BpeTrainer(
284
+ vocab_size=32768, # 2 ** 15
285
+ min_frequency=2,
286
+ special_tokens=special_tokens,
287
+ initial_alphabet=emoji_chars + programming_languages + code_keywords,
288
+ )
289
+
290
+ tokenizer.train_from_iterator(batch_iterator(), trainer)
291
+ tokenizer.save('../tokenizer.json')
292
+ tokenizer.model.save('../')
293
+
294
+ CHATML_CHAT_TEMPLATE = (
295
+ "{% for message in messages %}"
296
+ "{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
297
+ "{% endfor %}"
298
+ "{% if add_generation_prompt %}"
299
+ "{{ '<|im_start|>assistant\n' }}"
300
+ "{% endif %}"
301
+ )
302
+
303
+ fast_tokenizer = PreTrainedTokenizerFast(
304
+ tokenizer_object=tokenizer,
305
+ chat_template=CHATML_CHAT_TEMPLATE,
306
+ bos_token='<s>',
307
+ eos_token='</s>',
308
+ unk_token='<unk>',
309
+ pad_token='</s>',
310
+ clean_up_tokenization_spaces=False,
311
+ )
312
+
313
+ fast_tokenizer.save_pretrained('../')
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,1036 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<|im_start|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<|im_end|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "system",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "user",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "assistant",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "8": {
68
+ "content": "tool",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "9": {
76
+ "content": "<tools>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "10": {
84
+ "content": "</tools>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "11": {
92
+ "content": "<tool_call>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "12": {
100
+ "content": "</tool_call>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "13": {
108
+ "content": "<tool_response>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "14": {
116
+ "content": "</tool_response>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "15": {
124
+ "content": "\"arguments\"",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "16": {
132
+ "content": "\"name\"",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "17": {
140
+ "content": "<arguments>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "18": {
148
+ "content": "</arguments>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "19": {
156
+ "content": "<argument>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "20": {
164
+ "content": "</argument>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "21": {
172
+ "content": "<argument-name>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "22": {
180
+ "content": "</argument-name>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "23": {
188
+ "content": "<argument-type>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "24": {
196
+ "content": "</argument-type>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "25": {
204
+ "content": "<argument-value>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "26": {
212
+ "content": "</argument-value>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "27": {
220
+ "content": "<parameter>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "28": {
228
+ "content": "</parameter>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "29": {
236
+ "content": "<parameter-name>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "30": {
244
+ "content": "</parameter-name>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "31": {
252
+ "content": "<parameter-type>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "32": {
260
+ "content": "</parameter-type>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "33": {
268
+ "content": "<parameter-value>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "34": {
276
+ "content": "</parameter-value>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "35": {
284
+ "content": "<field>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "36": {
292
+ "content": "</field>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "37": {
300
+ "content": "<field-name>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "38": {
308
+ "content": "</field-name>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "39": {
316
+ "content": "<field-type>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "40": {
324
+ "content": "</field-type>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "41": {
332
+ "content": "<field-value>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "42": {
340
+ "content": "</field-value>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "43": {
348
+ "content": "<name>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "44": {
356
+ "content": "</name>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "45": {
364
+ "content": "<type>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "46": {
372
+ "content": "</type>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "47": {
380
+ "content": "<value>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "48": {
388
+ "content": "</value>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "49": {
396
+ "content": "<function>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "50": {
404
+ "content": "</function>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "51": {
412
+ "content": "<function-name>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "52": {
420
+ "content": "</function-name>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "53": {
428
+ "content": "<function-type>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "54": {
436
+ "content": "</function-type>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "55": {
444
+ "content": "<function-value>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "56": {
452
+ "content": "</function-value>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "57": {
460
+ "content": " ",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "58": {
468
+ "content": " ",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "59": {
476
+ "content": " ",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "60": {
484
+ "content": " ",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "61": {
492
+ "content": " ",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "62": {
500
+ "content": " ",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "63": {
508
+ "content": " ",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "64": {
516
+ "content": " ",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "65": {
524
+ "content": " ",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "66": {
532
+ "content": " ",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "67": {
540
+ "content": " ",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "68": {
548
+ "content": " ",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "69": {
556
+ "content": " ",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "70": {
564
+ "content": " ",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "71": {
572
+ "content": " ",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "72": {
580
+ "content": " ",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "73": {
588
+ "content": " ",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "74": {
596
+ "content": " ",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "75": {
604
+ "content": " ",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "76": {
612
+ "content": " ",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "77": {
620
+ "content": " ",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "78": {
628
+ "content": " ",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "79": {
636
+ "content": " ",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "80": {
644
+ "content": "<|reserved_0|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "81": {
652
+ "content": "<|reserved_1|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "82": {
660
+ "content": "<|reserved_2|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "83": {
668
+ "content": "<|reserved_3|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "84": {
676
+ "content": "<|reserved_4|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "85": {
684
+ "content": "<|reserved_5|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "86": {
692
+ "content": "<|reserved_6|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "87": {
700
+ "content": "<|reserved_7|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "88": {
708
+ "content": "<|reserved_8|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "89": {
716
+ "content": "<|reserved_9|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "90": {
724
+ "content": "<|reserved_10|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "91": {
732
+ "content": "<|reserved_11|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "92": {
740
+ "content": "<|reserved_12|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "93": {
748
+ "content": "<|reserved_13|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "94": {
756
+ "content": "<|reserved_14|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "95": {
764
+ "content": "<|reserved_15|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "96": {
772
+ "content": "<|reserved_16|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "97": {
780
+ "content": "<|reserved_17|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "98": {
788
+ "content": "<|reserved_18|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "99": {
796
+ "content": "<|reserved_19|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "100": {
804
+ "content": "<|reserved_20|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "101": {
812
+ "content": "<|reserved_21|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "102": {
820
+ "content": "<|reserved_22|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "103": {
828
+ "content": "<|reserved_23|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "104": {
836
+ "content": "<|reserved_24|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "105": {
844
+ "content": "<|reserved_25|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "106": {
852
+ "content": "<|reserved_26|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "107": {
860
+ "content": "<|reserved_27|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "108": {
868
+ "content": "<|reserved_28|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "109": {
876
+ "content": "<|reserved_29|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "110": {
884
+ "content": "<|reserved_30|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "111": {
892
+ "content": "<|reserved_31|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "112": {
900
+ "content": "<|reserved_32|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "113": {
908
+ "content": "<|reserved_33|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "114": {
916
+ "content": "<|reserved_34|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "115": {
924
+ "content": "<|reserved_35|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "116": {
932
+ "content": "<|reserved_36|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "117": {
940
+ "content": "<|reserved_37|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "118": {
948
+ "content": "<|reserved_38|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "119": {
956
+ "content": "<|reserved_39|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "120": {
964
+ "content": "<|reserved_40|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "121": {
972
+ "content": "<|reserved_41|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "122": {
980
+ "content": "<|reserved_42|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "123": {
988
+ "content": "<|reserved_43|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "124": {
996
+ "content": "<|reserved_44|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "125": {
1004
+ "content": "<|reserved_45|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "126": {
1012
+ "content": "<|reserved_46|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "127": {
1020
+ "content": "<|reserved_47|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ }
1027
+ },
1028
+ "bos_token": "<s>",
1029
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
1030
+ "clean_up_tokenization_spaces": false,
1031
+ "eos_token": "</s>",
1032
+ "model_max_length": 1000000000000000019884624838656,
1033
+ "pad_token": "</s>",
1034
+ "tokenizer_class": "PreTrainedTokenizerFast",
1035
+ "unk_token": "<unk>"
1036
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff