--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers language: [ 'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu', ] datasets: [ 'yahma/alpaca-cleaned', 'saillab/taco-datasets', 'xu-song/cc100-samples', 'badrex/llm-emoji-dataset', 'pszemraj/simple_wikipedia', 'AtlasUnified/Atlas-Reasoning', 'fblgit/simple-math', 'AtlasUnified/atlas-math-sets', 'rvv-karma/Math-QA', 'microsoft/orca-math-word-problems-200k', 'meta-math/MetaMathQA', 'TIGER-Lab/MathInstruct', 'ChuGyouk/WebInstructSub-only-socratic', 'thesven/gsm8k-reasoning', 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'KingNish/reasoning-base-20k', 'fmars/wiki_stem', 'ChuGyouk/WebInstructSub-only-sciencestackexchange', 'bigcode/the-stack-smol-xs', 'cognitivecomputations/dolphin-coder', 'HuggingFaceH4/CodeAlpaca_20K', 'm-a-p/CodeFeedback-Filtered-Instruction', 'NuclearAi/Nuke-X-Glaive-Python-Dataset', 'iamtarun/python_code_instructions_18k_alpaca', 'kloodia/html_200k', 'kloodia/json_200k', 'kloodia/javascript_200k', 'bleugreen/typescript-chunks', 'SkunkworksAI/reasoning-0.01', 'Magpie-Align/Magpie-Reasoning-150K', ] tags: - litgpt - litdata --- # tangled-llama-q-32k-base-v0.1 ![logo](./misc/logo.png) A pretrained language model based on the Llama model with about **65M** parameters. This model has been trained on **16.7B** (`16,698,858,240`) tokens from more than **3.6M** (`3,597,088`) dataset rows. This model **isn't** designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to **128K** (`131,072`) tokens, it was pretrained with sequences of **2K** (`2048`) tokens. The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model. [loss, val_loss](https://api.wandb.ai/links/mtasic85/jo8uatgs) [val_ppl](https://api.wandb.ai/links/mtasic85/f06bqhu6) [epoch](https://api.wandb.ai/links/mtasic85/buj8l3pf) [learning_rate](https://api.wandb.ai/links/mtasic85/h0ooy6sf) ## lm-evaluation-harness ```bash litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` | Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr| |---------------------------------------|------:|----------------|-----:|-----------|---|-----:|---|-----:| |arc_challenge | 1|none | 0|acc |↑ |0.1962|± |0.0116| | | |none | 0|acc_norm |↑ |0.2304|± |0.0123| |gsm8k | 3|flexible-extract| 5|exact_match|↑ |0.0144|± |0.0033| | | |strict-match | 5|exact_match|↑ |0.0015|± |0.0011| |hellaswag | 1|none | 0|acc |↑ |0.2631|± |0.0044| | | |none | 0|acc_norm |↑ |0.2758|± |0.0045| |mmlu | 2|none | |acc |↑ |0.2473|± |0.0036| | - humanities | 2|none | |acc |↑ |0.2351|± |0.0062| | - formal_logic | 1|none | 0|acc |↑ |0.2857|± |0.0404| | - high_school_european_history | 1|none | 0|acc |↑ |0.2667|± |0.0345| | - high_school_us_history | 1|none | 0|acc |↑ |0.2696|± |0.0311| | - high_school_world_history | 1|none | 0|acc |↑ |0.2110|± |0.0266| | - international_law | 1|none | 0|acc |↑ |0.1653|± |0.0339| | - jurisprudence | 1|none | 0|acc |↑ |0.2870|± |0.0437| | - logical_fallacies | 1|none | 0|acc |↑ |0.2331|± |0.0332| | - moral_disputes | 1|none | 0|acc |↑ |0.2283|± |0.0226| | - moral_scenarios | 1|none | 0|acc |↑ |0.2425|± |0.0143| | - philosophy | 1|none | 0|acc |↑ |0.2186|± |0.0235| | - prehistory | 1|none | 0|acc |↑ |0.2099|± |0.0227| | - professional_law | 1|none | 0|acc |↑ |0.2314|± |0.0108| | - world_religions | 1|none | 0|acc |↑ |0.2632|± |0.0338| | - other | 2|none | |acc |↑ |0.2485|± |0.0078| | - business_ethics | 1|none | 0|acc |↑ |0.2600|± |0.0441| | - clinical_knowledge | 1|none | 0|acc |↑ |0.2528|± |0.0267| | - college_medicine | 1|none | 0|acc |↑ |0.2254|± |0.0319| | - global_facts | 1|none | 0|acc |↑ |0.2700|± |0.0446| | - human_aging | 1|none | 0|acc |↑ |0.2377|± |0.0286| | - management | 1|none | 0|acc |↑ |0.2816|± |0.0445| | - marketing | 1|none | 0|acc |↑ |0.2692|± |0.0291| | - medical_genetics | 1|none | 0|acc |↑ |0.2600|± |0.0441| | - miscellaneous | 1|none | 0|acc |↑ |0.2350|± |0.0152| | - nutrition | 1|none | 0|acc |↑ |0.2549|± |0.0250| | - professional_accounting | 1|none | 0|acc |↑ |0.2801|± |0.0268| | - professional_medicine | 1|none | 0|acc |↑ |0.2610|± |0.0267| | - virology | 1|none | 0|acc |↑ |0.1807|± |0.0300| | - social sciences | 2|none | |acc |↑ |0.2658|± |0.0080| | - econometrics | 1|none | 0|acc |↑ |0.1930|± |0.0371| | - high_school_geography | 1|none | 0|acc |↑ |0.2172|± |0.0294| | - high_school_government_and_politics| 1|none | 0|acc |↑ |0.3212|± |0.0337| | - high_school_macroeconomics | 1|none | 0|acc |↑ |0.2923|± |0.0231| | - high_school_microeconomics | 1|none | 0|acc |↑ |0.3025|± |0.0298| | - high_school_psychology | 1|none | 0|acc |↑ |0.2752|± |0.0191| | - human_sexuality | 1|none | 0|acc |↑ |0.2290|± |0.0369| | - professional_psychology | 1|none | 0|acc |↑ |0.2386|± |0.0172| | - public_relations | 1|none | 0|acc |↑ |0.2636|± |0.0422| | - security_studies | 1|none | 0|acc |↑ |0.3143|± |0.0297| | - sociology | 1|none | 0|acc |↑ |0.2338|± |0.0299| | - us_foreign_policy | 1|none | 0|acc |↑ |0.2600|± |0.0441| | - stem | 2|none | |acc |↑ |0.2464|± |0.0077| | - abstract_algebra | 1|none | 0|acc |↑ |0.2500|± |0.0435| | - anatomy | 1|none | 0|acc |↑ |0.2148|± |0.0355| | - astronomy | 1|none | 0|acc |↑ |0.1908|± |0.0320| | - college_biology | 1|none | 0|acc |↑ |0.2569|± |0.0365| | - college_chemistry | 1|none | 0|acc |↑ |0.2700|± |0.0446| | - college_computer_science | 1|none | 0|acc |↑ |0.3500|± |0.0479| | - college_mathematics | 1|none | 0|acc |↑ |0.2700|± |0.0446| | - college_physics | 1|none | 0|acc |↑ |0.2745|± |0.0444| | - computer_security | 1|none | 0|acc |↑ |0.3000|± |0.0461| | - conceptual_physics | 1|none | 0|acc |↑ |0.2766|± |0.0292| | - electrical_engineering | 1|none | 0|acc |↑ |0.2345|± |0.0353| | - elementary_mathematics | 1|none | 0|acc |↑ |0.2566|± |0.0225| | - high_school_biology | 1|none | 0|acc |↑ |0.2226|± |0.0237| | - high_school_chemistry | 1|none | 0|acc |↑ |0.2217|± |0.0292| | - high_school_computer_science | 1|none | 0|acc |↑ |0.2000|± |0.0402| | - high_school_mathematics | 1|none | 0|acc |↑ |0.2370|± |0.0259| | - high_school_physics | 1|none | 0|acc |↑ |0.2517|± |0.0354| | - high_school_statistics | 1|none | 0|acc |↑ |0.2685|± |0.0302| | - machine_learning | 1|none | 0|acc |↑ |0.1786|± |0.0364| |truthfulqa_mc2 | 2|none | 0|acc |↑ |0.4668|± |0.0161| |winogrande | 1|none | 0|acc |↑ |0.5012|± |0.0141| | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.2473|± |0.0036| | - humanities | 2|none | |acc |↑ |0.2351|± |0.0062| | - other | 2|none | |acc |↑ |0.2485|± |0.0078| | - social sciences| 2|none | |acc |↑ |0.2658|± |0.0080| | - stem | 2|none | |acc |↑ |0.2464|± |0.0077| ```bash litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------| |leaderboard | N/A| | | | | | | | | - leaderboard_bbh | N/A| | | | | | | | | - leaderboard_bbh_boolean_expressions | 1|none | 3|acc_norm |↑ |0.4600|± |0.0316| | - leaderboard_bbh_causal_judgement | 1|none | 3|acc_norm |↑ |0.5187|± |0.0366| | - leaderboard_bbh_date_understanding | 1|none | 3|acc_norm |↑ |0.1840|± |0.0246| | - leaderboard_bbh_disambiguation_qa | 1|none | 3|acc_norm |↑ |0.3880|± |0.0309| | - leaderboard_bbh_formal_fallacies | 1|none | 3|acc_norm |↑ |0.4680|± |0.0316| | - leaderboard_bbh_geometric_shapes | 1|none | 3|acc_norm |↑ |0.1000|± |0.0190| | - leaderboard_bbh_hyperbaton | 1|none | 3|acc_norm |↑ |0.5160|± |0.0317| | - leaderboard_bbh_logical_deduction_five_objects | 1|none | 3|acc_norm |↑ |0.2080|± |0.0257| | - leaderboard_bbh_logical_deduction_seven_objects | 1|none | 3|acc_norm |↑ |0.1720|± |0.0239| | - leaderboard_bbh_logical_deduction_three_objects | 1|none | 3|acc_norm |↑ |0.3280|± |0.0298| | - leaderboard_bbh_movie_recommendation | 1|none | 3|acc_norm |↑ |0.2640|± |0.0279| | - leaderboard_bbh_navigate | 1|none | 3|acc_norm |↑ |0.5760|± |0.0313| | - leaderboard_bbh_object_counting | 1|none | 3|acc_norm |↑ |0.0520|± |0.0141| | - leaderboard_bbh_penguins_in_a_table | 1|none | 3|acc_norm |↑ |0.2260|± |0.0347| | - leaderboard_bbh_reasoning_about_colored_objects | 1|none | 3|acc_norm |↑ |0.0720|± |0.0164| | - leaderboard_bbh_ruin_names | 1|none | 3|acc_norm |↑ |0.2280|± |0.0266| | - leaderboard_bbh_salient_translation_error_detection | 1|none | 3|acc_norm |↑ |0.1920|± |0.0250| | - leaderboard_bbh_snarks | 1|none | 3|acc_norm |↑ |0.4831|± |0.0376| | - leaderboard_bbh_sports_understanding | 1|none | 3|acc_norm |↑ |0.4600|± |0.0316| | - leaderboard_bbh_temporal_sequences | 1|none | 3|acc_norm |↑ |0.2360|± |0.0269| | - leaderboard_bbh_tracking_shuffled_objects_five_objects | 1|none | 3|acc_norm |↑ |0.2080|± |0.0257| | - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 1|none | 3|acc_norm |↑ |0.1680|± |0.0237| | - leaderboard_bbh_tracking_shuffled_objects_three_objects| 1|none | 3|acc_norm |↑ |0.3040|± |0.0292| | - leaderboard_bbh_web_of_lies | 1|none | 3|acc_norm |↑ |0.4880|± |0.0317| | - leaderboard_gpqa | N/A| | | | | | | | | - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |↑ |0.2121|± |0.0291| | - leaderboard_gpqa_extended | 1|none | 0|acc_norm |↑ |0.2619|± |0.0188| | - leaderboard_gpqa_main | 1|none | 0|acc_norm |↑ |0.2589|± |0.0207| | - leaderboard_ifeval | 3|none | 0|inst_level_loose_acc |↑ |0.1966|± | N/A| | | |none | 0|inst_level_strict_acc |↑ |0.1835|± | N/A| | | |none | 0|prompt_level_loose_acc |↑ |0.1017|± |0.0130| | | |none | 0|prompt_level_strict_acc|↑ |0.0998|± |0.0129| | - leaderboard_math_hard | N/A| | | | | | | | | - leaderboard_math_algebra_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_counting_and_prob_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_geometry_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_intermediate_algebra_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_num_theory_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_prealgebra_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_math_precalculus_hard | 1|none | 4|exact_match |↑ |0.0000|± | 0| | - leaderboard_mmlu_pro | 0.1|none | 5|acc |↑ |0.1155|± |0.0029| | - leaderboard_musr | N/A| | | | | | | | | - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |↑ |0.5040|± |0.0317| | - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.3086|± |0.0289| | - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.3400|± |0.0300| ```bash litgpt evaluate --tasks 'bbh_zeroshot,bbh_fewshot,bbh_cot_fewshot,bbh_cot_zeroshot' --out_dir 'evaluate-bigbenchhard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'mmlu_multilingual,mgsm' --out_dir 'evaluate-multilinguals/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ```