tangled-llama-t-128k-base-v0.1 / scripts /prepare_pretrain_dataset.py
mtasic85's picture
multilingual dataset
39a4b5b
raw
history blame
15.5 kB
from typing import Optional
from functools import partial
from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
def batch_iterator(path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
revision: Optional[str]=None,
split: str='train',
format: Optional[str]=None):
assert format is not None
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
revision=revision,
split=split,
trust_remote_code=True)
for row in dataset:
text = format.format(**row)
yield text
def tokenize_fn(datasets_config, tokenizer=None):
for text in batch_iterator(**datasets_config):
text_ids = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
datasets_configs = [
# instruct
{'path': 'yahma/alpaca-cleaned', 'format': '{instruction} {input} {output}'},
{'path': 'gbharti/wealth-alpaca_lora', 'format': '{instruction} {input} {output}'},
{'path': 'databricks/databricks-dolly-15k', 'format': '{instruction} {context} {response}'},
{'path': 'VMware/open-instruct', 'format': '{instruction} {response}'},
# multilingual
# *[
# {'path': 'saillab/taco-datasets', 'data_dir': data_dir, 'split': f'train[{i}%:{i + 1}%]', 'format': '{instruction} {input} {output}'}
# for data_dir in [
# 'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
# 'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
# ]
# for i in range(0, 100, 10)
# ],
*[
{'path': 'saillab/taco-datasets', 'data_dir': data_dir, 'split': f'train', 'format': '{instruction} {input} {output}'}
for data_dir in [
f'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4/{n}'
for n in [
'Afrikaans',
'Albanian',
'Amharic',
'Arabic',
'Armenian',
'Assamese',
'Aymara',
'Azerbaijani',
'Bambara',
'Basque',
'Belarusian',
'Bengali',
'Bhojpuri',
'Bosnian',
'Bulgarian',
'Catalan',
'Cebuano',
'Chichewa',
'ChineseSimplified',
'ChineseTraditional',
'Corsican',
'Croatian',
'Czech',
'Danish',
'Divehi',
'Dogri',
'Dutch',
'Esperanto',
'Estonian',
'Ewe',
'Filipino',
'Finnish',
'French',
'Frisian',
'Galician',
'Georgian',
'German',
'Greek',
'Guarani',
'Gujarati',
'Haitian_Creole',
'Hausa',
'Hawaiian',
'Hebrew',
'Hindi',
'Hmong',
'Hungarian',
'Icelandic',
'Igbo',
'Ilocano',
'Indonesian',
'Irish',
'Italian',
'Japanese',
'Javanese',
'Kannada',
'Kazakh',
'Khmer',
'Kinyarwanda',
'Konkani',
'Korean',
'Krio',
'Kurdish_Kurmanji',
'Kurdish_Sorani',
'Kyrgyz',
'Lao',
'Latin',
'Latvian',
'Lingala',
'Lithuanian',
'Luganda',
'Luxembourgish',
'Macedonian',
'Maithili',
'Malagasy',
'Malay',
'Malayalam',
'Maltese',
'Maori',
'Marathi',
'Meiteilon_Manipuri',
'Mizo',
'Mongolian',
'Myanmar_Burmese',
'Nepali',
'Norwegian',
'Odia_Oriya',
'Oromo',
'Pashto',
'Persian',
'Polish',
'Portuguese',
'Punjabi',
'Quechua',
'Romanian',
'Russian',
'Samoan',
'Sanskrit',
'ScottishGaelic',
'Sepedi',
'Serbian',
'Sesotho',
'Shona',
'Sindhi',
'Sinhala',
'Slovak',
'Slovenian',
'Somali',
'Spanish',
'Sundanese',
'Swahili',
'Swedish',
'Tajik',
'Tamil',
'Tatar',
'Telugu',
'Thai',
'Tigrinya',
'Tsonga',
'Turkish',
'Turkmen',
'Twi',
'Ukrainian',
'Urdu',
'Uyghur',
'Uzbek',
'Vietnamese',
'Welsh',
'Xhosa',
'Yiddish',
'Yoruba',
'Zulu',
]
]
],
*[
{'path': 'saillab/taco-datasets', 'data_dir': 'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k/', 'data_files': n, 'split': f'train', 'format': '{instruction} {input} {output}'}
for n in [
'Afrikaans.json',
'Albanian.json',
'Amharic.json',
'Arabic.json',
'Armenian.json',
'Assamese.json',
'Aymara.json',
'Azerbaijani.json',
'Bambara.json',
'Basque.json',
'Belarusian.json',
'Bengali.json',
'Bhojpuri.json',
'Bosnian.json',
'Bulgarian.json',
'Catalan.json',
'Cebuano.json',
'Chichewa.json',
'ChineseSimplified.json',
'ChineseTraditional.json',
'Corsican.json',
'Croatian.json',
'Czech.json',
'Danish.json',
'Dhivehi.json',
'Dogri.json',
'Dutch.json',
'English.json',
'Esperanto.json',
'Estonian.json',
'Ewe.json',
'Filipino.json',
'Finnish.json',
'French.json',
'Frisian.json',
'Galician.json',
'Georgian.json',
'German.json',
'Greek.json',
'Guarani.json',
'Gujarati.json',
'Haitian_Creole.json',
'Hausa.json',
'Hawaiian.json',
'Hebrew.json',
'Hindi.json',
'Hmong.json',
'Hungarian.json',
'Icelandic.json',
'Igbo.json',
'Ilocano.json',
'Indonesian.json',
'Irish.json',
'Italian.json',
'Japanese.json',
'Javanese.json',
'Kannada.json',
'Kazakh.json',
'Khmer.json',
'Kinyarwanda.json',
'Konkani.json',
'Korean.json',
'Krio.json',
'Kurdish_Kurmanji.json',
'Kurdish_Sorani.json',
'Kyrgyz.json',
'Lao.json',
'Latin.json',
'Latvian.json',
'Lingala.json',
'Lithuanian.json',
'Luganda.json',
'Luxembourgish.json',
'Macedonian.json',
'Maithili.json',
'Malagasy.json',
'Malayalam.json',
'Malay.json',
'Maltese.json',
'Maori.json',
'Marathi.json',
'Meiteilon_Manipuri.json',
'Mizo.json',
'Mongolian.json',
'Myanmar_Burmese.json',
'Nepali.json',
'Norwegian.json',
'Odia_Oriya.json',
'Oromo.json',
'Pashto.json',
'Persian.json',
'Polish.json',
'Portuguese.json',
'Punjabi.json',
'Quechua.json',
'Romanian.json',
'Russian.json',
'Samoan.json',
'Sanskrit.json',
'ScottishGaelic.json',
'Sepedi.json',
'Serbian.json',
'Sesotho.json',
'Shona.json',
'Sindhi.json',
'Sinhala.json',
'Slovak.json',
'Slovenian.json',
'Somali.json',
'Spanish.json',
'Sundanese.json',
'Swahili.json',
'Swedish.json',
'Tajik.json',
'Tamil.json',
'Tatar.json',
'Telugu.json',
'Thai.json',
'Tigrinya.json',
'Tsonga.json',
'Turkish.json',
'Turkmen.json',
'Twi.json',
'Ukrainian.json',
'Urdu.json',
'Uyghur.json',
'Uzbek.json',
'Vietnamese.json',
'Welsh.json',
'Xhosa.json',
'Yiddish.json',
'Yoruba.json',
'Zulu.json',
]
],
*[
{'path': 'xu-song/cc100-samples', 'name': name, 'split': f'train[{i}%:{i + 1}%]', 'format': '{text}'}
for name in [
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
for i in range(0, 100, 10)
],
*[
{'path': 'jordiclive/wikipedia-summary-dataset', 'split': f'train[{i}%:{i + 5}%]', 'format': '{summary}'}
for i in range(0, 100, 5)
],
# {'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': 'train[:5%]', 'format': '{text}'},
# general
# {'path': 'MuskumPillerum/General-Knowledge', 'format': '{Question} {Answer}'},
# {'path': 'yirenc/general_knowledge_boolean', 'split': 'train+validation', 'format': '{question}? {answer}. {passage}'},
# {'path': 'nuvocare/MSD_instruct', 'split': 'train+test', 'format': '{Question} {Text}'},
# {'path': 'keivalya/MedQuad-MedicalQnADataset', 'split': 'train', 'format': '{Question} {Answer}'},
# {'path': 'NousResearch/CharacterCodex', 'split': 'train', 'format': '{scenario} {description}'},
# {'path': 'nampdn-ai/tiny-textbooks', 'split': 'train+test', 'format': '{textbook}'},
# code
# {'path': 'nampdn-ai/tiny-codes', 'split': 'train[:5%]', 'format': '{prompt} {response}'},
*[
{'path': 'bigcode/the-stack-smol-xs', 'name': name, 'format': '{content}'}
for name in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
],
{'path': 'm-a-p/CodeFeedback-Filtered-Instruction', 'split': 'train', 'format': '{query} {answer}'},
{'path': 'jtatman/python-code-dataset-500k', 'format': '{instruction} {output}'},
{'path': 'iamtarun/python_code_instructions_18k_alpaca', 'format': '{instruction} {input} {output}'},
{'path': 'HuggingFaceH4/CodeAlpaca_20K', 'split': 'train+test', 'format': '{prompt} {completion}'},
{'path': 'cognitivecomputations/dolphin-coder', 'split': 'train', 'format': '{question} {response}'},
# math
{'path': 'fblgit/simple-math', 'revision': 'refs/convert/parquet', 'split': 'train+test', 'format': '{instruction} = {output}'},
*[
{'path': 'gair-prox/open-web-math-pro', 'split': f'train[{i}%:{i + 1}%]', 'format': '{text}'}
for i in range(0, 100, 20)
],
{'path': 'rvv-karma/Math-QA', 'split': 'train+val+test', 'format': '{question} {answer}'},
{'path': 'ajibawa-2023/Maths-College', 'split': 'train', 'format': '{instruction} {output}'},
{'path': 'microsoft/orca-math-word-problems-200k', 'format': '{question} {answer}'},
{'path': 'meta-math/MetaMathQA', 'format': '{query} {response}'},
{'path': 'TIGER-Lab/MathInstruct', 'format': '{instruction} {output}'},
{'path': 'TIGER-Lab/WebInstructSub', 'format': '{question} {answer}'},
# reasoning
{'path': 'SkunkworksAI/reasoning-0.01', 'format': '{instruction} {reasoning} {output}'},
{'path': 'KingNish/reasoning-base-20k', 'format': '{user} {reasoning} {assistant}'},
{'path': 'Magpie-Align/Magpie-Reasoning-150K', 'format': '{instruction} {response}'},
{'path': 'thesven/gsm8k-reasoning', 'format': '{question} {generation} {answer} {short_answer}'},
{'path': 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'format': '{informal_statement} {informal_proof} {formal_proof}'},
# misc
{'path': 'badrex/llm-emoji-dataset', 'format': '{character} {unicode} {short description} {tags} {LLM description}'},
]
outputs = optimize(
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
inputs=datasets_configs,
output_dir='../pretrain-data/',
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
chunk_size=(2049 * 8012),
num_workers=32,
)