# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with # ``model_config``. (type: Optional[str], default: null) model_name: "Llama-3.2-1B" # A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with # ``model_config``. (type: Optional[Config], default: null) model_config: padded_vocab_size: 38400 vocab_size: 38400 block_size: 8192 n_layer: 16 n_head: 32 head_size: null n_embd: 256 n_query_groups: 8 rotary_percentage: 1.0 parallel_residual: false bias: false norm_class_name: "RMSNorm" norm_eps: 1e-05 mlp_class_name: "LLaMAMLP" intermediate_size: 1024 rope_base: 500000 # rope_adjustments: # factor: 32.0 # low_freq_factor: 1.0 # high_freq_factor: 4.0 # original_max_seq_len: 8192 # Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in # /teamspace/jobs//share. (type: , default: out/pretrain) out_dir: "../out/pretrain/" # The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null) # precision: bf16-mixed precision: bf16-true # Optional path to a checkpoint directory to initialize the model from. # Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null) initial_checkpoint_dir: # Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume # from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing # ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists. # (type: Union[bool, Literal["auto"], Path], default: False) # resume: false resume: "auto" # Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``. data: class_path: LitData init_args: data_path: "../pretrain-data/" num_workers: 16 # Training-related arguments. See ``litgpt.args.TrainArgs`` for details train: # Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000) save_interval: 200 # Number of iterations between logging calls (type: int, default: 1) log_interval: 1 # Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512) global_batch_size: 512 # Number of samples per data-parallel rank (type: int, default: 4) # micro_batch_size: 16 micro_batch_size: 16 # Number of iterations with learning rate warmup active (type: int, default: 2000) lr_warmup_steps: 2000 # Number of epochs to train on (type: Optional[int], default: null) epochs: # Total number of tokens to train on (type: Optional[int], default: 3000000000000) # max_tokens: 3000000000000 max_tokens: 36852166560 # 3597088 * 2049 * 5 # Limits the number of optimizer steps to run. (type: Optional[int], default: null) max_steps: # Limits the length of samples. Off by default (type: Optional[int], default: null) max_seq_length: 2049 # Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False) tie_embeddings: true # (type: Optional[float], default: 1.0) max_norm: 1.0 # (type: float, default: 4e-05) min_lr: 1e-4 # Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details eval: # Number of optimizer steps between evaluation calls (type: int, default: 1000) interval: 100 # Number of tokens to generate (type: Optional[int], default: null) max_new_tokens: # Number of iterations (type: int, default: 100) max_iters: 100 # Whether to evaluate on the validation set at the beginning of the training initial_validation: false # Whether to evaluate on the validation set at the end the training final_validation: true # Optimizer-related arguments optimizer: # class_path: torch.optim.AdamW # class_path: grokadamw.GrokAdamW class_path: bitsandbytes.optim.AdamW8bit # class_path: bitsandbytes.optim.PagedAdamW8bit init_args: # (type: float, default: 0.001) lr: 1e-3 # (type: float, default: 0.01) weight_decay: 0.1 # (type: tuple, default: (0.9,0.999)) betas: - 0.9 - 0.95 # How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto) devices: auto # How many nodes to use. (type: int, default: 1) num_nodes: 1 # Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data # module require this. (type: Optional[Path], default: null) tokenizer_dir: "../" # The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard) logger_name: "wandb" # The random seed to use for reproducibility. (type: int, default: 42) seed: 42