--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers language: [ 'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu', ] datasets: [ 'yahma/alpaca-cleaned', 'gbharti/wealth-alpaca_lora', 'databricks/databricks-dolly-15k', 'VMware/open-instruct', 'saillab/taco-datasets', 'xu-song/cc100-samples', 'jordiclive/wikipedia-summary-dataset', 'bigcode/the-stack-smol-xs', 'm-a-p/CodeFeedback-Filtered-Instruction', 'jtatman/python-code-dataset-500k', 'iamtarun/python_code_instructions_18k_alpaca', 'HuggingFaceH4/CodeAlpaca_20K', 'cognitivecomputations/dolphin-coder', 'fblgit/simple-math', 'gair-prox/open-web-math-pro', 'rvv-karma/Math-QA', 'ajibawa-2023/Maths-College', 'microsoft/orca-math-word-problems-200k', 'meta-math/MetaMathQA', 'TIGER-Lab/MathInstruct', 'TIGER-Lab/WebInstructSub', 'SkunkworksAI/reasoning-0.01', 'KingNish/reasoning-base-20k', 'Magpie-Align/Magpie-Reasoning-150K', 'thesven/gsm8k-reasoning', 'AlgorithmicResearchGroup/math_reasoning_autoformalization_track', 'badrex/llm-emoji-dataset', ] tags: - litgpt - litdata --- # tangled-llama-t-32k-base-v0.1 ![logo](./misc/logo.png) A pretrained language model based on the Llama model with about **25M** parameters. This model has been trained on **22.1B** (`22,111,299,936`) tokens from more than **3.6M** (`3,597,088`) dataset rows. This model **isn't** designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to **128K** (`131,072`) tokens, it was pretrained with sequences of **2K** (`2048`) tokens. The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model. [loss, val_loss](https://api.wandb.ai/links/mtasic85/t66yvgeh) [val_ppl](https://api.wandb.ai/links/mtasic85/osr62qqd) [epoch](https://api.wandb.ai/links/mtasic85/pw0ilz5s) [learning_rate](https://api.wandb.ai/links/mtasic85/867ueoyx) ## lm-evaluation-harness ```bash litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'bbh_zeroshot,bbh_fewshot,bbh_cot_fewshot,bbh_cot_zeroshot' --out_dir 'evaluate-bigbenchhard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'mmlu_multilingual,mgsm' --out_dir 'evaluate-multilinguals/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ``` ```bash litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/ ```