File size: 10,398 Bytes
fd468b1 c62a845 54c27fe c62a845 fd468b1 c62a845 fd468b1 c62a845 54c27fe c62a845 54c27fe 9255616 55dc3c2 54c27fe 049be21 c62a845 41211a9 54c27fe c62a845 abd5982 54c27fe abd5982 fd468b1 c62a845 fd468b1 54c27fe fd468b1 abd5982 54c27fe abd5982 c62a845 abd5982 fd468b1 abd5982 fd468b1 54c27fe abd5982 fd468b1 abd5982 fd468b1 54c27fe abd5982 54c27fe abd5982 54c27fe fd468b1 54c27fe fd468b1 c62a845 fd468b1 54c27fe fd468b1 7854677 54c27fe 7854677 fd468b1 54c27fe fd468b1 54c27fe fd468b1 54c27fe 012c999 54c27fe 55dc3c2 54c27fe 55dc3c2 54c27fe fd468b1 54c27fe fd468b1 80f3ec1 54c27fe 0abae5c 54c27fe 80f3ec1 fd468b1 c62a845 854297e 7854677 54c27fe fd468b1 54c27fe abd5982 c62a845 54c27fe abd5982 cbbac33 7854677 854297e 54c27fe fd468b1 54c27fe fd468b1 1816ac6 fd468b1 54c27fe fd468b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gc
from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
from functools import partial
def batch_iterator(name=None):
# text
if name in (None, 'saillab/taco-datasets'):
dataset = (
load_dataset(name, data_dir=data_dir, split='train')
for data_dir in [
'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
]
)
for d in dataset:
for row in d:
for n in row:
yield (
row['instruction'] +
' ' +
row['input'] +
' ' +
row['output']
)
del dataset
gc.collect()
# text
if name in (None, 'xu-song/cc100-samples'):
dataset = (
load_dataset(name, lang, split='train')
for lang in [
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
)
for d in dataset:
for row in d['text']:
yield row
del dataset
gc.collect()
# text
if name in (None, 'ontocord/fineweb-permissive-multilingual-2m'):
dataset = load_dataset(name, split='train')
for row in dataset['text']:
yield row
del dataset
gc.collect()
# text
if name in (None, 'MuskumPillerum/General-Knowledge'):
dataset = load_dataset(name, split='train')
for row in dataset:
if not row['Question'] or not row['Answer']:
continue
yield row['Question'] + ' ' + row['Answer']
del dataset
gc.collect()
# text
if name in (None, 'yirenc/general_knowledge_boolean'):
for split in ['train', 'validation']:
dataset = load_dataset(name, split=split)
for row in dataset:
yield row['question'] + '? ' + str(row['answer']) + '. ' + row['passage']
del dataset
gc.collect()
# text
if name in (None, 'nampdn-ai/tiny-textbooks'):
for split in ['train', 'test']:
dataset = load_dataset(name, split=split)
for row in dataset['textbook']:
yield row
del dataset
gc.collect()
# code
if name in (None, 'nampdn-ai/tiny-codes'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['prompt'] +
' ' +
row['response']
)
del dataset
gc.collect()
# code
if name in (None, 'bigcode/the-stack-smol-xs'):
dataset = (
load_dataset(name, lang, split='train', trust_remote_code=True)
for lang in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
)
for d in dataset:
for row in d['content']:
yield row
del dataset
gc.collect()
# text + code
if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['query'] +
' ' +
row['answer']
)
del dataset
gc.collect()
# code
if name in (None, 'jtatman/python-code-dataset-500k'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['instruction'] +
' ' +
row['output']
)
del dataset
gc.collect()
# code
if name in (None, 'iamtarun/python_code_instructions_18k_alpaca'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['instruction'] +
' ' +
row['input'] +
' ' +
row['output']
)
del dataset
gc.collect()
# code
if name in (None, 'HuggingFaceH4/CodeAlpaca_20K'):
for split in ['train', 'test']:
dataset = load_dataset(name, split=split)
for row in dataset:
yield (
row['prompt'] +
' ' +
row['completion']
)
del dataset
gc.collect()
# math
if name in (None, 'gair-prox/open-web-math-pro'):
dataset = load_dataset(name, split='train')
for row in dataset['text']:
yield row
del dataset
gc.collect()
# math
if name in (None, 'rvv-karma/Math-QA'):
for split in ['train', 'val', 'test']:
dataset = load_dataset(name, split=split)
for row in dataset:
yield (
row['question'] +
' ' +
row['answer']
)
del dataset
gc.collect()
# math
if name in (None, 'ajibawa-2023/Maths-College'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['instruction'] +
' ' +
row['output']
)
del dataset
gc.collect()
# math
if name in (None, 'microsoft/orca-math-word-problems-200k'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['question'] +
' ' +
row['answer']
)
del dataset
gc.collect()
# math
if name in (None, 'fblgit/simple-math'):
for split in ['train', 'test']:
dataset = load_dataset(name, revision='refs/convert/parquet', split=split)
for row in dataset:
yield (
str(row['instruction']) +
' = ' +
str(row['output'])
)
del dataset
gc.collect()
# reasoning
if name in (None, 'SkunkworksAI/reasoning-0.01'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['instruction'] +
' ' +
row['reasoning'] +
' ' +
row['output']
)
del dataset
gc.collect()
# emoji
if name in (None, 'badrex/llm-emoji-dataset'):
dataset = load_dataset(name, split='train')
for row in dataset:
yield (
row['character'] +
' ' +
row['unicode'] +
' ' +
row['short description'] +
' ' +
str(row['tags']) +
' ' +
row['LLM description']
)
del dataset
gc.collect()
def tokenize_fn(dataset_name, tokenizer=None):
for text in batch_iterator(dataset_name):
text_ids = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
datasets_names = [
'saillab/taco-datasets',
# 'xu-song/cc100-samples',
# 'ontocord/fineweb-permissive-multilingual-2m',
'MuskumPillerum/General-Knowledge',
'yirenc/general_knowledge_boolean',
'nampdn-ai/tiny-textbooks',
# 'nampdn-ai/tiny-codes',
'bigcode/the-stack-smol-xs',
'm-a-p/CodeFeedback-Filtered-Instruction',
# 'jtatman/python-code-dataset-500k',
'iamtarun/python_code_instructions_18k_alpaca',
'HuggingFaceH4/CodeAlpaca_20K',
# 'gair-prox/open-web-math-pro',
'rvv-karma/Math-QA',
# 'ajibawa-2023/Maths-College',
'microsoft/orca-math-word-problems-200k',
'fblgit/simple-math',
# 'SkunkworksAI/reasoning-0.01',
'badrex/llm-emoji-dataset',
]
outputs = optimize(
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
inputs=datasets_names,
output_dir='../pretrain-data/',
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
chunk_size=(2049 * 8012),
num_workers=16,
)
|