mtasic85's picture
new tokenizer 38400
c62a845
raw
history blame
8.06 kB
import gc
import sys
from datasets import load_dataset
from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.processors import TemplateProcessing
x = input('Are you sure? [y/N] ')
if x not in ('y', 'Y', 'yes'):
sys.exit(0)
def batch_iterator():
# text
dataset = (
load_dataset('saillab/taco-datasets', data_dir=data_dir, split='train')
for data_dir in [
'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
]
)
for d in dataset:
for row in d:
for n in row:
yield row['instruction'] + '\n' + row['input'] + '\n' + row['output']
del dataset
gc.collect()
# text
dataset = (
load_dataset('xu-song/cc100-samples', lang, split='train')
for lang in [
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
'zh-Hans', 'zh-Hant', 'zu',
]
)
for d in dataset:
for row in d['text']:
yield row
del dataset
gc.collect()
# code
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
for row in dataset:
for n in row['keywords']:
yield n
del dataset
gc.collect()
# code
dataset = (
load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
for lang in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
'yacc', 'zig',
]
)
for d in dataset:
for row in d:
yield row['content']
del dataset
gc.collect()
# text + code
dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
for row in dataset:
yield row['query'] + '\n' + row['answer']
del dataset
gc.collect()
# math
dataset = load_dataset('gair-prox/open-web-math-pro', split='train')
for row in dataset:
yield row['text']
del dataset
gc.collect()
# math
dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
for row in dataset:
yield row['instruction'] + '\n' + row['output']
del dataset
gc.collect()
# math
dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
for row in dataset:
yield row['question'] + '\n' + row['answer']
del dataset
gc.collect()
# emoji
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
for row in dataset:
yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
del dataset
gc.collect()
bpe = BPE(unk_token=None, fuse_unk=False, byte_fallback=False, ignore_merges=True)
tokenizer = Tokenizer(bpe)
special_tokens = [
'<unk>',
'<s>',
'</s>',
'<|im_start|>',
'<|im_end|>',
'system',
'user',
'assistant',
'tool',
'<tools>',
'</tools>',
'<tool_call>',
'</tool_call>',
'<tool_response>',
'</tool_response>',
'"arguments"',
'"name"',
'<arguments>',
'</arguments>',
'<argument>',
'</argument>',
'<argument-name>',
'</argument-name>',
'<argument-type>',
'</argument-type>',
'<argument-value>',
'</argument-value>',
'<parameter>',
'</parameter>',
'<parameter-name>',
'</parameter-name>',
'<parameter-type>',
'</parameter-type>',
'<parameter-value>',
'</parameter-value>',
'<field>',
'</field>',
'<field-name>',
'</field-name>',
'<field-type>',
'</field-type>',
'<field-value>',
'</field-value>',
'<name>',
'</name>',
'<type>',
'</type>',
'<value>',
'</value>',
'<function>',
'</function>',
'<function-name>',
'</function-name>',
'<function-type>',
'</function-type>',
'<function-value>',
'</function-value>',
]
for i in range(2, 25):
special_tokens.append(' ' * i)
for i in range(64 - len(special_tokens)):
special_tokens.append(f'<|reserved_{i}|>')
# emoji
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
emoji_chars = [row['character'] for row in dataset if len(row['character']) == 1]
del dataset
# programming languages
dataset = load_dataset('Tanvir1337/programming-languages', split='train')
programming_languages = [n for row in dataset for n in row['text']]
del dataset
# programming languages keywords
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
code_keywords = [n for row in dataset for n in row['keywords']]
del dataset
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
tokenizer.post_processor = TemplateProcessing(
single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences
pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens
special_tokens=[],
)
tokenizer.decoder = decoders.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
trainer = BpeTrainer(
vocab_size=38400, # 32768 chars + 5034 emojis
min_frequency=2,
special_tokens=special_tokens,
initial_alphabet=emoji_chars + programming_languages + code_keywords,
)
tokenizer.train_from_iterator(batch_iterator(), trainer)
tokenizer.save('../tokenizer.json')
tokenizer.model.save('../')
CHATML_CHAT_TEMPLATE = (
"{% for message in messages %}"
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ '<|im_start|>assistant\n' }}"
"{% endif %}"
)
fast_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
chat_template=CHATML_CHAT_TEMPLATE,
bos_token='<s>',
eos_token='</s>',
unk_token='<unk>',
pad_token='</s>',
clean_up_tokenization_spaces=False,
)
fast_tokenizer.save_pretrained('../')