|
import gc |
|
import sys |
|
|
|
from datasets import load_dataset |
|
from transformers import PreTrainedTokenizerFast |
|
from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders |
|
from tokenizers.models import BPE |
|
from tokenizers.trainers import BpeTrainer |
|
from tokenizers.processors import TemplateProcessing |
|
|
|
|
|
x = input('Are you sure? [y/N] ') |
|
|
|
if x not in ('y', 'Y', 'yes'): |
|
sys.exit(0) |
|
|
|
|
|
def batch_iterator(): |
|
|
|
dataset = ( |
|
load_dataset('saillab/taco-datasets', data_dir=data_dir, split='train') |
|
for data_dir in [ |
|
'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4', |
|
'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k', |
|
] |
|
) |
|
|
|
for d in dataset: |
|
for row in d: |
|
for n in row: |
|
yield row['instruction'] + '\n' + row['input'] + '\n' + row['output'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = ( |
|
load_dataset('xu-song/cc100-samples', lang, split='train') |
|
for lang in [ |
|
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', |
|
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', |
|
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', |
|
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', |
|
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', |
|
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', |
|
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', |
|
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', |
|
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', |
|
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', |
|
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', |
|
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', |
|
'zh-Hans', 'zh-Hant', 'zu', |
|
] |
|
) |
|
|
|
for d in dataset: |
|
for row in d['text']: |
|
yield row |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('bigcode/programming-languages-keywords', split='train') |
|
|
|
for row in dataset: |
|
for n in row['keywords']: |
|
yield n |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = ( |
|
load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True) |
|
for lang in [ |
|
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', |
|
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c', |
|
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', |
|
'css', 'cuda', 'dart', 'dockerfile', 'elixir', |
|
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', |
|
'groovy', 'haskell','html', 'idris', 'isabelle', 'java', |
|
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', |
|
'literate-agda', 'literate-coffeescript', 'literate-haskell', |
|
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', |
|
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog', |
|
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', |
|
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme', |
|
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', |
|
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex', |
|
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', |
|
'yacc', 'zig', |
|
] |
|
) |
|
|
|
for d in dataset: |
|
for row in d: |
|
yield row['content'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train') |
|
|
|
for row in dataset: |
|
yield row['query'] + '\n' + row['answer'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('gair-prox/open-web-math-pro', split='train') |
|
|
|
for row in dataset: |
|
yield row['text'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('ajibawa-2023/Maths-College', split='train') |
|
|
|
for row in dataset: |
|
yield row['instruction'] + '\n' + row['output'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train') |
|
|
|
for row in dataset: |
|
yield row['question'] + '\n' + row['answer'] |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
dataset = load_dataset('badrex/llm-emoji-dataset', split='train') |
|
|
|
for row in dataset: |
|
yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}' |
|
|
|
del dataset |
|
gc.collect() |
|
|
|
|
|
bpe = BPE(unk_token=None, fuse_unk=False, byte_fallback=False, ignore_merges=True) |
|
tokenizer = Tokenizer(bpe) |
|
|
|
special_tokens = [ |
|
'<unk>', |
|
'<s>', |
|
'</s>', |
|
'<|im_start|>', |
|
'<|im_end|>', |
|
'system', |
|
'user', |
|
'assistant', |
|
'tool', |
|
|
|
'<tools>', |
|
'</tools>', |
|
'<tool_call>', |
|
'</tool_call>', |
|
'<tool_response>', |
|
'</tool_response>', |
|
|
|
'"arguments"', |
|
'"name"', |
|
|
|
'<arguments>', |
|
'</arguments>', |
|
'<argument>', |
|
'</argument>', |
|
'<argument-name>', |
|
'</argument-name>', |
|
'<argument-type>', |
|
'</argument-type>', |
|
'<argument-value>', |
|
'</argument-value>', |
|
'<parameter>', |
|
'</parameter>', |
|
'<parameter-name>', |
|
'</parameter-name>', |
|
'<parameter-type>', |
|
'</parameter-type>', |
|
'<parameter-value>', |
|
'</parameter-value>', |
|
'<field>', |
|
'</field>', |
|
'<field-name>', |
|
'</field-name>', |
|
'<field-type>', |
|
'</field-type>', |
|
'<field-value>', |
|
'</field-value>', |
|
'<name>', |
|
'</name>', |
|
'<type>', |
|
'</type>', |
|
'<value>', |
|
'</value>', |
|
'<function>', |
|
'</function>', |
|
'<function-name>', |
|
'</function-name>', |
|
'<function-type>', |
|
'</function-type>', |
|
'<function-value>', |
|
'</function-value>', |
|
] |
|
|
|
for i in range(2, 25): |
|
special_tokens.append(' ' * i) |
|
|
|
for i in range(64 - len(special_tokens)): |
|
special_tokens.append(f'<|reserved_{i}|>') |
|
|
|
|
|
dataset = load_dataset('badrex/llm-emoji-dataset', split='train') |
|
emoji_chars = [row['character'] for row in dataset if len(row['character']) == 1] |
|
del dataset |
|
|
|
|
|
dataset = load_dataset('Tanvir1337/programming-languages', split='train') |
|
programming_languages = [n for row in dataset for n in row['text']] |
|
del dataset |
|
|
|
|
|
dataset = load_dataset('bigcode/programming-languages-keywords', split='train') |
|
code_keywords = [n for row in dataset for n in row['keywords']] |
|
del dataset |
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True) |
|
|
|
tokenizer.post_processor = TemplateProcessing( |
|
single='$A:0', |
|
pair='$A:0 $B:1', |
|
special_tokens=[], |
|
) |
|
|
|
tokenizer.decoder = decoders.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True) |
|
|
|
trainer = BpeTrainer( |
|
vocab_size=38400, |
|
min_frequency=2, |
|
special_tokens=special_tokens, |
|
initial_alphabet=emoji_chars + programming_languages + code_keywords, |
|
) |
|
|
|
tokenizer.train_from_iterator(batch_iterator(), trainer) |
|
tokenizer.save('../tokenizer.json') |
|
tokenizer.model.save('../') |
|
|
|
CHATML_CHAT_TEMPLATE = ( |
|
"{% for message in messages %}" |
|
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}" |
|
"{% endfor %}" |
|
"{% if add_generation_prompt %}" |
|
"{{ '<|im_start|>assistant\n' }}" |
|
"{% endif %}" |
|
) |
|
|
|
fast_tokenizer = PreTrainedTokenizerFast( |
|
tokenizer_object=tokenizer, |
|
chat_template=CHATML_CHAT_TEMPLATE, |
|
bos_token='<s>', |
|
eos_token='</s>', |
|
unk_token='<unk>', |
|
pad_token='</s>', |
|
clean_up_tokenization_spaces=False, |
|
) |
|
|
|
fast_tokenizer.save_pretrained('../') |
|
|