import gc from datasets import load_dataset from litdata import optimize, TokensLoader from litgpt.tokenizer import Tokenizer from functools import partial def batch_iterator(name=None): # text if name in (None, 'saillab/taco-datasets'): dataset = ( load_dataset(name, data_dir=data_dir, split='train') for data_dir in [ 'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4', 'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k', ] ) for d in dataset: for row in d: for n in row: yield ( row['instruction'] + ' ' + row['input'] + ' ' + row['output'] ) del dataset gc.collect() # text if name in (None, 'xu-song/cc100-samples'): dataset = ( load_dataset(name, lang, split='train') for lang in [ 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu', ] ) for d in dataset: for row in d['text']: yield row del dataset gc.collect() # text if name in (None, 'ontocord/fineweb-permissive-multilingual-2m'): dataset = load_dataset(name, split='train') for row in dataset['text']: yield row del dataset gc.collect() # text if name in (None, 'MuskumPillerum/General-Knowledge'): dataset = load_dataset(name, split='train') for row in dataset: if not row['Question'] or not row['Answer']: continue yield row['Question'] + ' ' + row['Answer'] del dataset gc.collect() # text if name in (None, 'yirenc/general_knowledge_boolean'): for split in ['train', 'test']: dataset = load_dataset(name, split=split) for row in dataset: yield row['question'] + '? ' + str(row['answer']) + '. ' + row['passage'] del dataset gc.collect() # text if name in (None, 'nampdn-ai/tiny-textbooks'): for split in ['train', 'test']: dataset = load_dataset(name, split=split) for row in dataset['textbook']: yield row del dataset gc.collect() # code if name in (None, 'nampdn-ai/tiny-codes'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['prompt'] + ' ' + row['response'] ) del dataset gc.collect() # code if name in (None, 'bigcode/the-stack-smol-xs'): dataset = ( load_dataset(name, lang, split='train', trust_remote_code=True) for lang in [ 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c', 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir', 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java', 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell', 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog', 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme', 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex', 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig', ] ) for d in dataset: for row in d['content']: yield row del dataset gc.collect() # text + code if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['query'] + ' ' + row['answer'] ) del dataset gc.collect() # code if name in (None, 'jtatman/python-code-dataset-500k'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['instruction'] + ' ' + row['output'] ) del dataset gc.collect() # code if name in (None, 'iamtarun/python_code_instructions_18k_alpaca'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['instruction'] + ' ' + row['input'] + ' ' + row['output'] ) del dataset gc.collect() # code if name in (None, 'HuggingFaceH4/CodeAlpaca_20K'): for split in ['train', 'test']: dataset = load_dataset(name, split=split) for row in dataset: yield ( row['prompt'] + ' ' + row['completion'] ) del dataset gc.collect() # math if name in (None, 'gair-prox/open-web-math-pro'): dataset = load_dataset(name, split='train') for row in dataset['text']: yield row del dataset gc.collect() # math if name in (None, 'rvv-karma/Math-QA'): for split in ['train', 'val', 'test']: dataset = load_dataset(name, split=split) for row in dataset: yield ( row['question'] + ' ' + row['answer'] ) del dataset gc.collect() # math if name in (None, 'ajibawa-2023/Maths-College'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['instruction'] + ' ' + row['output'] ) del dataset gc.collect() # math if name in (None, 'microsoft/orca-math-word-problems-200k'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['question'] + ' ' + row['answer'] ) del dataset gc.collect() # math if name in (None, 'fblgit/simple-math'): for split in ['train', 'test']: dataset = load_dataset(name, split=split) for row in dataset: yield ( row['instruction'] + ' = ' + row['output'] ) del dataset gc.collect() # reasoning if name in (None, 'SkunkworksAI/reasoning-0.01'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['instruction'] + ' ' + row['reasoning'] + ' ' + row['output'] ) del dataset gc.collect() # emoji if name in (None, 'badrex/llm-emoji-dataset'): dataset = load_dataset(name, split='train') for row in dataset: yield ( row['character'] + ' ' + row['unicode'] + ' ' + row['short description'] + ' ' + str(row['tags']) + ' ' + row['LLM description'] ) del dataset gc.collect() def tokenize_fn(dataset_name, tokenizer=None): for text in batch_iterator(dataset_name): text_ids = tokenizer.encode(text, bos=False, eos=True) yield text_ids datasets_names = [ 'saillab/taco-datasets', # 'xu-song/cc100-samples', # 'ontocord/fineweb-permissive-multilingual-2m', 'MuskumPillerum/General-Knowledge', 'yirenc/general_knowledge_boolean', 'nampdn-ai/tiny-textbooks', # 'nampdn-ai/tiny-codes', 'bigcode/the-stack-smol-xs', 'm-a-p/CodeFeedback-Filtered-Instruction', # 'jtatman/python-code-dataset-500k', 'iamtarun/python_code_instructions_18k_alpaca', 'HuggingFaceH4/CodeAlpaca_20K', # 'gair-prox/open-web-math-pro', 'rvv-karma/Math-QA', # 'ajibawa-2023/Maths-College', 'microsoft/orca-math-word-problems-200k', 'fblgit/simple-math', # 'SkunkworksAI/reasoning-0.01', 'badrex/llm-emoji-dataset', ] outputs = optimize( fn=partial(tokenize_fn, tokenizer=Tokenizer('..')), inputs=datasets_names, output_dir='../pretrain-data/', # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk. chunk_size=(2049 * 8012), num_workers=16, )