---
base_model: pints-ai/1.5-Pints-16K-v0.1
library_name: peft
license: mit
tags:
- generated_from_trainer
model-index:
- name: tangledgroup/tangled-llama-pints-1.5b-v0.1-instruct
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: pints-ai/1.5-Pints-16K-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: tangledgroup/tangled-llama-pints-1.5b-v0.1-dataset
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
# optimizer: paged_adamw_32bit
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 15.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# tangledgroup/tangled-llama-pints-1.5b-v0.1-instruct
This model is a fine-tuned version of [pints-ai/1.5-Pints-16K-v0.1](https://huggingface.co/pints-ai/1.5-Pints-16K-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1867 | 0.0041 | 1 | 1.2217 |
| 1.147 | 0.3347 | 82 | 1.1398 |
| 1.1475 | 0.6694 | 164 | 1.1236 |
| 1.1831 | 1.0041 | 246 | 1.1143 |
| 1.1513 | 1.3194 | 328 | 1.1087 |
| 1.0978 | 1.6541 | 410 | 1.1045 |
| 1.085 | 1.9888 | 492 | 1.1015 |
| 1.0014 | 2.3041 | 574 | 1.1004 |
| 0.9882 | 2.6388 | 656 | 1.0998 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1