--- base_model: pints-ai/1.5-Pints-16K-v0.1 library_name: peft license: mit tags: - generated_from_trainer model-index: - name: tangledgroup/tangled-llama-pints-1.5b-v0.1-instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: pints-ai/1.5-Pints-16K-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: tangledgroup/tangled-llama-pints-1.5b-v0.1-dataset type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 # optimizer: paged_adamw_32bit optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 15.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# tangledgroup/tangled-llama-pints-1.5b-v0.1-instruct This model is a fine-tuned version of [pints-ai/1.5-Pints-16K-v0.1](https://huggingface.co/pints-ai/1.5-Pints-16K-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1867 | 0.0041 | 1 | 1.2217 | | 1.147 | 0.3347 | 82 | 1.1398 | | 1.1475 | 0.6694 | 164 | 1.1236 | | 1.1831 | 1.0041 | 246 | 1.1143 | | 1.1513 | 1.3194 | 328 | 1.1087 | | 1.0978 | 1.6541 | 410 | 1.1045 | | 1.085 | 1.9888 | 492 | 1.1015 | | 1.0014 | 2.3041 | 574 | 1.1004 | | 0.9882 | 2.6388 | 656 | 1.0998 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1