PEFT
PyTorch
Safetensors
llama
Generated from Trainer
mtasic85 commited on
Commit
5c229e2
1 Parent(s): bc545e9

updated README

Browse files
Files changed (1) hide show
  1. README.md +157 -1
README.md CHANGED
@@ -1,3 +1,159 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: pints-ai/1.5-Pints-16K-v0.1
3
+ library_name: peft
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: tangledgroup/tangled-llama-pints-1.5b-v0.2-instruct
9
+ results: []
10
  ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ base_model: pints-ai/1.5-Pints-16K-v0.1
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset
30
+ type: sharegpt
31
+ conversation: chatml
32
+ chat_template: chatml
33
+ dataset_prepared_path:
34
+ val_set_size: 0.05
35
+ output_dir: ./outputs/qlora-out
36
+
37
+ adapter: qlora
38
+ lora_model_dir:
39
+
40
+ sequence_len: 16384
41
+ sample_packing: true
42
+ pad_to_sequence_len: true
43
+
44
+ lora_r: 32
45
+ lora_alpha: 16
46
+ lora_dropout: 0.05
47
+ lora_target_modules:
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+
51
+ wandb_project:
52
+ wandb_entity:
53
+ wandb_watch:
54
+ wandb_name:
55
+ wandb_log_model:
56
+
57
+ gradient_accumulation_steps: 4
58
+ micro_batch_size: 2
59
+ num_epochs: 3
60
+ optimizer: paged_adamw_32bit
61
+ # optimizer: adamw_torch_fused
62
+ lr_scheduler: cosine
63
+ learning_rate: 0.0002
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: auto
68
+ fp16:
69
+ tf32: false
70
+
71
+ gradient_checkpointing: true
72
+ early_stopping_patience:
73
+ resume_from_checkpoint:
74
+ local_rank:
75
+ logging_steps: 1
76
+ xformers_attention:
77
+ flash_attention: true
78
+
79
+ loss_watchdog_threshold: 15.0
80
+ loss_watchdog_patience: 3
81
+
82
+ warmup_steps: 10
83
+ evals_per_epoch: 3
84
+ eval_table_size:
85
+ saves_per_epoch: 1
86
+ debug:
87
+ deepspeed:
88
+ weight_decay: 0.0
89
+ fsdp:
90
+ fsdp_config:
91
+ special_tokens:
92
+
93
+ plugins:
94
+ - axolotl.integrations.liger.LigerPlugin
95
+ liger_rope: true
96
+ liger_rms_norm: true
97
+ liger_swiglu: true
98
+ liger_fused_linear_cross_entropy: true
99
+ ```
100
+
101
+ </details><br>
102
+
103
+ # outputs/qlora-out
104
+
105
+ This model is a fine-tuned version of [pints-ai/1.5-Pints-16K-v0.1](https://huggingface.co/pints-ai/1.5-Pints-16K-v0.1) on the None dataset.
106
+ It achieves the following results on the evaluation set:
107
+ - Loss: 0.9847
108
+
109
+ ## Model description
110
+
111
+ More information needed
112
+
113
+ ## Intended uses & limitations
114
+
115
+ More information needed
116
+
117
+ ## Training and evaluation data
118
+
119
+ More information needed
120
+
121
+ ## Training procedure
122
+
123
+ ### Training hyperparameters
124
+
125
+ The following hyperparameters were used during training:
126
+ - learning_rate: 0.0002
127
+ - train_batch_size: 2
128
+ - eval_batch_size: 2
129
+ - seed: 42
130
+ - gradient_accumulation_steps: 4
131
+ - total_train_batch_size: 8
132
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
133
+ - lr_scheduler_type: cosine
134
+ - lr_scheduler_warmup_steps: 10
135
+ - num_epochs: 3
136
+
137
+ ### Training results
138
+
139
+ | Training Loss | Epoch | Step | Validation Loss |
140
+ |:-------------:|:------:|:----:|:---------------:|
141
+ | 1.1396 | 0.0011 | 1 | 1.1313 |
142
+ | 1.0777 | 0.3332 | 295 | 1.0278 |
143
+ | 1.0219 | 0.6665 | 590 | 1.0119 |
144
+ | 1.0006 | 0.9997 | 885 | 1.0020 |
145
+ | 1.0385 | 1.3307 | 1180 | 0.9954 |
146
+ | 0.9405 | 1.6639 | 1475 | 0.9902 |
147
+ | 0.9249 | 1.9972 | 1770 | 0.9867 |
148
+ | 0.9951 | 2.3282 | 2065 | 0.9856 |
149
+ | 0.9713 | 2.6616 | 2360 | 0.9848 |
150
+ | 0.9576 | 2.9949 | 2655 | 0.9847 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.12.0
156
+ - Transformers 4.45.0.dev0
157
+ - Pytorch 2.4.1
158
+ - Datasets 2.21.0
159
+ - Tokenizers 0.19.1