File size: 2,369 Bytes
d5500ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Accuracy: 0.8289
- F1: 0.8595
- Precision: 0.8864
- Recall: 0.8342

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 47   | 0.1056          | 0.7059   | 0.7788 | 0.8684    | 0.7059 |
| No log        | 2.0   | 94   | 0.0961          | 0.7219   | 0.7895 | 0.8710    | 0.7219 |
| No log        | 3.0   | 141  | 0.1042          | 0.7594   | 0.8045 | 0.8554    | 0.7594 |
| No log        | 4.0   | 188  | 0.0899          | 0.8021   | 0.8427 | 0.8876    | 0.8021 |
| No log        | 5.0   | 235  | 0.0911          | 0.8182   | 0.8540 | 0.8807    | 0.8289 |
| No log        | 6.0   | 282  | 0.0808          | 0.8289   | 0.8595 | 0.8864    | 0.8342 |
| No log        | 7.0   | 329  | 0.0885          | 0.8503   | 0.8689 | 0.8883    | 0.8503 |
| No log        | 8.0   | 376  | 0.0873          | 0.8396   | 0.8634 | 0.8827    | 0.8449 |
| No log        | 9.0   | 423  | 0.0926          | 0.8342   | 0.8579 | 0.8771    | 0.8396 |
| No log        | 10.0  | 470  | 0.0904          | 0.8342   | 0.8603 | 0.8820    | 0.8396 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1