--- library_name: transformers license: llama3.2 base_model: tanliboy/llama-3.2-3b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - alignment-handbook - generated_from_trainer datasets: - tanliboy/OpenHermes-2.5-reformat model-index: - name: llama-3.2-3b-sft results: [] --- # llama-3.2-3b-sft This model is a fine-tuned version of [tanliboy/llama-3.2-3b](https://huggingface.co/tanliboy/llama-3.2-3b) on the tanliboy/OpenHermes-2.5-reformat dataset. It achieves the following results on the evaluation set: - Loss: 0.7216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8741 | 0.0448 | 100 | 0.8600 | | 0.8038 | 0.0897 | 200 | 0.8095 | | 0.7937 | 0.1345 | 300 | 0.7789 | | 0.7712 | 0.1794 | 400 | 0.7644 | | 0.7393 | 0.2242 | 500 | 0.7565 | | 0.7458 | 0.2691 | 600 | 0.7506 | | 0.7694 | 0.3139 | 700 | 0.7458 | | 0.713 | 0.3587 | 800 | 0.7422 | | 0.7347 | 0.4036 | 900 | 0.7387 | | 0.7243 | 0.4484 | 1000 | 0.7356 | | 0.7161 | 0.4933 | 1100 | 0.7331 | | 0.7247 | 0.5381 | 1200 | 0.7308 | | 0.7477 | 0.5830 | 1300 | 0.7288 | | 0.7429 | 0.6278 | 1400 | 0.7273 | | 0.7317 | 0.6726 | 1500 | 0.7256 | | 0.7226 | 0.7175 | 1600 | 0.7243 | | 0.695 | 0.7623 | 1700 | 0.7234 | | 0.7167 | 0.8072 | 1800 | 0.7226 | | 0.686 | 0.8520 | 1900 | 0.7221 | | 0.7214 | 0.8969 | 2000 | 0.7218 | | 0.7358 | 0.9417 | 2100 | 0.7216 | | 0.7259 | 0.9865 | 2200 | 0.7216 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1