tanmaylaud commited on
Commit
f86c703
1 Parent(s): cbd4a72

first model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: mlp
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.97 +/- 62.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **mlp** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **mlp** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe832448c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe832448ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe832448d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe832448dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fe832448e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fe832448ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe832448f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe83244d040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe83244d0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe83244d160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe83244d1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe83244d280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe83244c0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673938259359264731, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEpesD4RqqY+csAYvuW7rL7U++Q8ZEeXPAAAAAAAAAAAE/ZGPng0LT+tZTW8HN6Zvmin1z18fAA9AAAAAAAAAABzC/69u55fP/Xj7j36DMK+9Gitu2KSeDwAAAAAAAAAAHo1SL6mVw0/nvedPYcqmb7KtkS9ZCY/PAAAAAAAAAAAo0CoPp/Saz8p5Lg+ssOgvorsoT6TpHK9AAAAAAAAAABtOYI+/aQnPwqzbzz8pLW+rBglPsUOy7wAAAAAAAAAAAAuxz33VhY+o0ywPGHfcb4jNKw8dbZjvQAAAAAAAAAA5vWVvXfIMT9LgUE9MZKRvo3hs7xqmsI9AAAAAAAAAADA7Yq9uUmhP2rn0r5f2Oi+KAOTve6IUb4AAAAAAAAAAGYuiz1a03w+OnQPvd9thL6Ur9s8EBbkvAAAAAAAAAAAM1sYPGwtprtyNea8HjgaPZNLbTzSWNe6AACAPwAAgD8A1GE9m5GMP+4qdT2ZSJ6+yaK8PaoaET0AAAAAAAAAAIY5cb5Xk4k/C7Omvrsq5L7IF5u+dgIiPQAAAAAAAAAAKulPvqiAu7xVeBY7u5SGOZVdKj6TnES6AACAPwAAgD+ahJE9romrurO0LjiNSycz4WQzOgZqSLcAAAAAAACAP809vzzoa6s+vtk8PYFnhr7FdZA8cgxsvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAb7bvHEkSkCUhpRSlIwBbJRLxowBdJRHQJv/Q2CNCJJ1fZQoaAZoCWgPQwjdYROZuW9mQJSGlFKUaBVN6ANoFkdAnAB5Yoy9EnV9lChoBmgJaA9DCBAjhEdbe3BAlIaUUpRoFU0oAWgWR0CcG44WDYh/dX2UKGgGaAloD0MI28GIfQIlcUCUhpRSlGgVTfQBaBZHQJwcV5Qgs9V1fZQoaAZoCWgPQwiKWppbocptQJSGlFKUaBVNwQJoFkdAnBzaB/Zuh3V9lChoBmgJaA9DCNxKr80Gk3FAlIaUUpRoFU1fAWgWR0CcHbCbtqpMdX2UKGgGaAloD0MIU8xB0NHecECUhpRSlGgVTZMBaBZHQJwdxQl8gIR1fZQoaAZoCWgPQwjdXPxtj9hzQJSGlFKUaBVNuQFoFkdAnB4un/DLsHV9lChoBmgJaA9DCPTfg9cuyW9AlIaUUpRoFU3sAWgWR0CcHmOtW+49dX2UKGgGaAloD0MI0lPkELGfcUCUhpRSlGgVTb8CaBZHQJwei2fChvl1fZQoaAZoCWgPQwhDN/sDZTdyQJSGlFKUaBVNbwFoFkdAnB+KFdszmHV9lChoBmgJaA9DCCV4QxqV03BAlIaUUpRoFU1IAmgWR0CcIDHZsbeedX2UKGgGaAloD0MIwR4TKQ2ScUCUhpRSlGgVTTYBaBZHQJwh1diUgSx1fZQoaAZoCWgPQwhg56bNOIRxQJSGlFKUaBVNTwFoFkdAnCJ8XaakRHV9lChoBmgJaA9DCB0AcVevVHFAlIaUUpRoFU1oAWgWR0CcI5863iJgdX2UKGgGaAloD0MI+S6lLpngcUCUhpRSlGgVTYoBaBZHQJwl72h7E511fZQoaAZoCWgPQwi8y0V8JzBOQJSGlFKUaBVLzGgWR0CcJ7mp2ll9dX2UKGgGaAloD0MIr84xIHsUUUCUhpRSlGgVS9BoFkdAnCjcyvcJt3V9lChoBmgJaA9DCPiL2ZLVz3FAlIaUUpRoFU0oAWgWR0CcKqKf4AS4dX2UKGgGaAloD0MI1PIDV/lrcUCUhpRSlGgVTWUBaBZHQJwsAF8ohIR1fZQoaAZoCWgPQwhjuaXVEEpuQJSGlFKUaBVNOQFoFkdAnCwcA/9pAXV9lChoBmgJaA9DCLN6h9thunJAlIaUUpRoFU1FAWgWR0CcLIWHDaXbdX2UKGgGaAloD0MIJSTSNj7tcECUhpRSlGgVTYUBaBZHQJws7M/yGzt1fZQoaAZoCWgPQwiHFtnOdyVvQJSGlFKUaBVNoQFoFkdAnDBtJe3QU3V9lChoBmgJaA9DCIlDNpCuoGxAlIaUUpRoFU2zAWgWR0CcMTsAeaKDdX2UKGgGaAloD0MIvcXDew7Zb0CUhpRSlGgVTTgCaBZHQJwxaKrJbMZ1fZQoaAZoCWgPQwiERUWcDnVzQJSGlFKUaBVNAAJoFkdAnDP8XzlLe3V9lChoBmgJaA9DCE60q5CyknBAlIaUUpRoFU2PAWgWR0CcNKKUVzp5dX2UKGgGaAloD0MIWMnH7oJDbECUhpRSlGgVTWIBaBZHQJw00yad+Xt1fZQoaAZoCWgPQwgbvK/KhaVtQJSGlFKUaBVNHQFoFkdAnDbjiXIEKXV9lChoBmgJaA9DCCZxVkTNI3BAlIaUUpRoFU09AWgWR0CcN2HlOoHcdX2UKGgGaAloD0MI2iCTjNxscECUhpRSlGgVTcQBaBZHQJw33fWMCLd1fZQoaAZoCWgPQwjP29jsSOJRQJSGlFKUaBVL1WgWR0CcOzW56MR6dX2UKGgGaAloD0MI3eo56X1ycECUhpRSlGgVTUwBaBZHQJw75p1zQu51fZQoaAZoCWgPQwgRxHk4AfhrQJSGlFKUaBVNxQFoFkdAnDwaF7D2rXV9lChoBmgJaA9DCPmDgefeyG1AlIaUUpRoFU0LA2gWR0CcPDNxEORUdX2UKGgGaAloD0MIeuQPBp7HcUCUhpRSlGgVTWcBaBZHQJw9CKqGUOd1fZQoaAZoCWgPQwjQ8jy4O5JuQJSGlFKUaBVNXgFoFkdAnD0PeYUnHHV9lChoBmgJaA9DCM7fhEKEK3FAlIaUUpRoFU1yAWgWR0CcPi9AX2ugdX2UKGgGaAloD0MIV7Q5zu3JbUCUhpRSlGgVTS0BaBZHQJxDnvOQhfV1fZQoaAZoCWgPQwjni70XXypwQJSGlFKUaBVNkAFoFkdAnEU/TXrdFnV9lChoBmgJaA9DCBvV6UAWcHFAlIaUUpRoFU2jAWgWR0CcRYE9dNWVdX2UKGgGaAloD0MIJ2a9GEqqcUCUhpRSlGgVTR0CaBZHQJxGCLCN0eV1fZQoaAZoCWgPQwiie9Y1GsxwQJSGlFKUaBVNKQFoFkdAnEZr2Dg62nV9lChoBmgJaA9DCJELzuDvwW1AlIaUUpRoFU0mAWgWR0CcR2hf0EowdX2UKGgGaAloD0MIzXfwEweUMkCUhpRSlGgVS9ZoFkdAnEfo8EFGG3V9lChoBmgJaA9DCK8/ic9dAnJAlIaUUpRoFU2GAWgWR0CcSAtZV4ordX2UKGgGaAloD0MI5ZfBGBHLcECUhpRSlGgVTRMBaBZHQJxLf/Mnqml1fZQoaAZoCWgPQwhLWvENRZ5xQJSGlFKUaBVNzAFoFkdAnGccuOCGvnV9lChoBmgJaA9DCOlGWFREoXBAlIaUUpRoFU2bAWgWR0CcZ3jqv/zbdX2UKGgGaAloD0MIrkoi+2AccUCUhpRSlGgVTUQBaBZHQJxo8tf5ULl1fZQoaAZoCWgPQwhcyCO40WJwQJSGlFKUaBVNbQFoFkdAnGkXVPN3XHV9lChoBmgJaA9DCJWBA1q6njNAlIaUUpRoFUviaBZHQJxp1byH2yt1fZQoaAZoCWgPQwh/v5gt2aFwQJSGlFKUaBVNfAFoFkdAnGooVymygXV9lChoBmgJaA9DCHB4QURqim5AlIaUUpRoFU1TAWgWR0CcaqpBHCoCdX2UKGgGaAloD0MI0m2JXHCzckCUhpRSlGgVTX4BaBZHQJxrHkxREWt1fZQoaAZoCWgPQwhCtcGJ6M1vQJSGlFKUaBVNCwFoFkdAnGwgwsXiznV9lChoBmgJaA9DCBfZzvcTKXBAlIaUUpRoFU0pAWgWR0CcbbaSs8xLdX2UKGgGaAloD0MIpkdTPZm+cECUhpRSlGgVTUYBaBZHQJxuZUADJU51fZQoaAZoCWgPQwidZKvLqXVwQJSGlFKUaBVNIwFoFkdAnG7NweeWfXV9lChoBmgJaA9DCCR9WkU/wHFAlIaUUpRoFU1QAWgWR0Ccb3jR2KVIdX2UKGgGaAloD0MIJQUWwBQUbUCUhpRSlGgVTT4BaBZHQJxv6ugYgq51fZQoaAZoCWgPQwiu9UVCW6xsQJSGlFKUaBVNYgFoFkdAnHDKjFhod3V9lChoBmgJaA9DCBQhdTt7xmtAlIaUUpRoFU0EAWgWR0CccUdgfEGadX2UKGgGaAloD0MIdVlMbD6/cUCUhpRSlGgVTRQBaBZHQJxxmmk30f51fZQoaAZoCWgPQwhzZyYYzm5yQJSGlFKUaBVNGgFoFkdAnHStOqNp/XV9lChoBmgJaA9DCJuqe2RzYTdAlIaUUpRoFUvsaBZHQJx1p0W/JvJ1fZQoaAZoCWgPQwidRloqL41wQJSGlFKUaBVNKgFoFkdAnHXjkp7TlXV9lChoBmgJaA9DCLu3IjFBl3BAlIaUUpRoFU1OAWgWR0Ccdjt7rs0IdX2UKGgGaAloD0MIKGA7GHF6ckCUhpRSlGgVTTIBaBZHQJx23cJtzjp1fZQoaAZoCWgPQwhafuAqT4BCQJSGlFKUaBVL22gWR0Ccdue7+T/ydX2UKGgGaAloD0MI1GGFW76tbUCUhpRSlGgVTT4BaBZHQJx35FRYRul1fZQoaAZoCWgPQwhqa0QwjhhyQJSGlFKUaBVNKQFoFkdAnHtcAWBSUHV9lChoBmgJaA9DCKVlpN5T6UVAlIaUUpRoFUvfaBZHQJx7cMy8BdV1fZQoaAZoCWgPQwgu/rYnCPhyQJSGlFKUaBVNIAFoFkdAnHxRWT5ft3V9lChoBmgJaA9DCDoGZK83kXJAlIaUUpRoFU0oAWgWR0CcfeqYqoZRdX2UKGgGaAloD0MI4ZUkzzVvcECUhpRSlGgVTR8BaBZHQJx+DzGxUvR1fZQoaAZoCWgPQwgBhXr6yBFyQJSGlFKUaBVNlAFoFkdAnIAFLeyiVXV9lChoBmgJaA9DCCL99nXgID9AlIaUUpRoFUvTaBZHQJyASM2m52B1fZQoaAZoCWgPQwh5lEp4Qt9MQJSGlFKUaBVL/mgWR0CcgbUo8ZDRdX2UKGgGaAloD0MIgSOBBps4SECUhpRSlGgVS9poFkdAnIHTaXa8H3V9lChoBmgJaA9DCOlJmdRQOm9AlIaUUpRoFU0sAWgWR0CcglFdcB2fdX2UKGgGaAloD0MIR3L5D2leb0CUhpRSlGgVTbABaBZHQJyCm42CNCJ1fZQoaAZoCWgPQwiZnNoZ5uFwQJSGlFKUaBVNLgFoFkdAnISRaouPFXV9lChoBmgJaA9DCNVbA1slfVBAlIaUUpRoFUvUaBZHQJyGOd9Ujs51fZQoaAZoCWgPQwjudygKtAByQJSGlFKUaBVNdgFoFkdAnIbPPszEaXV9lChoBmgJaA9DCLmLMEW5NE5AlIaUUpRoFUvqaBZHQJyIiotL+P11fZQoaAZoCWgPQwiIuDmVDGQ0QJSGlFKUaBVL9GgWR0CciyCUornUdX2UKGgGaAloD0MICD2bVR/EckCUhpRSlGgVTWkBaBZHQJyL17LMcIZ1fZQoaAZoCWgPQwjNH9Pa9BJwQJSGlFKUaBVNCwFoFkdAnIvyfDk2gnV9lChoBmgJaA9DCEhRZ+6hnnFAlIaUUpRoFU2FAWgWR0CcjPzUZvUCdX2UKGgGaAloD0MIgEkqU0ySa0CUhpRSlGgVTXABaBZHQJyOfesPrfN1fZQoaAZoCWgPQwiwyoXKP4tyQJSGlFKUaBVNLgFoFkdAnI7wlF+d9XV9lChoBmgJaA9DCIi4OZWMwG9AlIaUUpRoFU0iAWgWR0CcjwuLrHENdX2UKGgGaAloD0MIA+li00oYVUCUhpRSlGgVS8JoFkdAnI8joIOYpnV9lChoBmgJaA9DCA+Z8iEoSXJAlIaUUpRoFU0wAWgWR0CcjytRNyo5dX2UKGgGaAloD0MI1EZ1OhBbcUCUhpRSlGgVTREBaBZHQJyQMzN2TxJ1fZQoaAZoCWgPQwgPR1fp7qdhQJSGlFKUaBVN6ANoFkdAnJB1UhmoSHV9lChoBmgJaA9DCP2GiQYp3nFAlIaUUpRoFU1QAWgWR0CckOZCv5gxdX2UKGgGaAloD0MIOpD11GorcUCUhpRSlGgVTRQBaBZHQJyRf8hs67x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander_hfcourse_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45041ceef53f0ff46ae1d6f950d0786d4e6f41434cba1bfc7d614791ed8a1d7e
3
+ size 147406
lunar_lander_hfcourse_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_lander_hfcourse_v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe832448c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe832448ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe832448d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe832448dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe832448e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe832448ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe832448f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe83244d040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe83244d0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe83244d160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe83244d1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe83244d280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe83244c0c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673938259359264731,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEpesD4RqqY+csAYvuW7rL7U++Q8ZEeXPAAAAAAAAAAAE/ZGPng0LT+tZTW8HN6Zvmin1z18fAA9AAAAAAAAAABzC/69u55fP/Xj7j36DMK+9Gitu2KSeDwAAAAAAAAAAHo1SL6mVw0/nvedPYcqmb7KtkS9ZCY/PAAAAAAAAAAAo0CoPp/Saz8p5Lg+ssOgvorsoT6TpHK9AAAAAAAAAABtOYI+/aQnPwqzbzz8pLW+rBglPsUOy7wAAAAAAAAAAAAuxz33VhY+o0ywPGHfcb4jNKw8dbZjvQAAAAAAAAAA5vWVvXfIMT9LgUE9MZKRvo3hs7xqmsI9AAAAAAAAAADA7Yq9uUmhP2rn0r5f2Oi+KAOTve6IUb4AAAAAAAAAAGYuiz1a03w+OnQPvd9thL6Ur9s8EBbkvAAAAAAAAAAAM1sYPGwtprtyNea8HjgaPZNLbTzSWNe6AACAPwAAgD8A1GE9m5GMP+4qdT2ZSJ6+yaK8PaoaET0AAAAAAAAAAIY5cb5Xk4k/C7Omvrsq5L7IF5u+dgIiPQAAAAAAAAAAKulPvqiAu7xVeBY7u5SGOZVdKj6TnES6AACAPwAAgD+ahJE9romrurO0LjiNSycz4WQzOgZqSLcAAAAAAACAP809vzzoa6s+vtk8PYFnhr7FdZA8cgxsvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAb7bvHEkSkCUhpRSlIwBbJRLxowBdJRHQJv/Q2CNCJJ1fZQoaAZoCWgPQwjdYROZuW9mQJSGlFKUaBVN6ANoFkdAnAB5Yoy9EnV9lChoBmgJaA9DCBAjhEdbe3BAlIaUUpRoFU0oAWgWR0CcG44WDYh/dX2UKGgGaAloD0MI28GIfQIlcUCUhpRSlGgVTfQBaBZHQJwcV5Qgs9V1fZQoaAZoCWgPQwiKWppbocptQJSGlFKUaBVNwQJoFkdAnBzaB/Zuh3V9lChoBmgJaA9DCNxKr80Gk3FAlIaUUpRoFU1fAWgWR0CcHbCbtqpMdX2UKGgGaAloD0MIU8xB0NHecECUhpRSlGgVTZMBaBZHQJwdxQl8gIR1fZQoaAZoCWgPQwjdXPxtj9hzQJSGlFKUaBVNuQFoFkdAnB4un/DLsHV9lChoBmgJaA9DCPTfg9cuyW9AlIaUUpRoFU3sAWgWR0CcHmOtW+49dX2UKGgGaAloD0MI0lPkELGfcUCUhpRSlGgVTb8CaBZHQJwei2fChvl1fZQoaAZoCWgPQwhDN/sDZTdyQJSGlFKUaBVNbwFoFkdAnB+KFdszmHV9lChoBmgJaA9DCCV4QxqV03BAlIaUUpRoFU1IAmgWR0CcIDHZsbeedX2UKGgGaAloD0MIwR4TKQ2ScUCUhpRSlGgVTTYBaBZHQJwh1diUgSx1fZQoaAZoCWgPQwhg56bNOIRxQJSGlFKUaBVNTwFoFkdAnCJ8XaakRHV9lChoBmgJaA9DCB0AcVevVHFAlIaUUpRoFU1oAWgWR0CcI5863iJgdX2UKGgGaAloD0MI+S6lLpngcUCUhpRSlGgVTYoBaBZHQJwl72h7E511fZQoaAZoCWgPQwi8y0V8JzBOQJSGlFKUaBVLzGgWR0CcJ7mp2ll9dX2UKGgGaAloD0MIr84xIHsUUUCUhpRSlGgVS9BoFkdAnCjcyvcJt3V9lChoBmgJaA9DCPiL2ZLVz3FAlIaUUpRoFU0oAWgWR0CcKqKf4AS4dX2UKGgGaAloD0MI1PIDV/lrcUCUhpRSlGgVTWUBaBZHQJwsAF8ohIR1fZQoaAZoCWgPQwhjuaXVEEpuQJSGlFKUaBVNOQFoFkdAnCwcA/9pAXV9lChoBmgJaA9DCLN6h9thunJAlIaUUpRoFU1FAWgWR0CcLIWHDaXbdX2UKGgGaAloD0MIJSTSNj7tcECUhpRSlGgVTYUBaBZHQJws7M/yGzt1fZQoaAZoCWgPQwiHFtnOdyVvQJSGlFKUaBVNoQFoFkdAnDBtJe3QU3V9lChoBmgJaA9DCIlDNpCuoGxAlIaUUpRoFU2zAWgWR0CcMTsAeaKDdX2UKGgGaAloD0MIvcXDew7Zb0CUhpRSlGgVTTgCaBZHQJwxaKrJbMZ1fZQoaAZoCWgPQwiERUWcDnVzQJSGlFKUaBVNAAJoFkdAnDP8XzlLe3V9lChoBmgJaA9DCE60q5CyknBAlIaUUpRoFU2PAWgWR0CcNKKUVzp5dX2UKGgGaAloD0MIWMnH7oJDbECUhpRSlGgVTWIBaBZHQJw00yad+Xt1fZQoaAZoCWgPQwgbvK/KhaVtQJSGlFKUaBVNHQFoFkdAnDbjiXIEKXV9lChoBmgJaA9DCCZxVkTNI3BAlIaUUpRoFU09AWgWR0CcN2HlOoHcdX2UKGgGaAloD0MI2iCTjNxscECUhpRSlGgVTcQBaBZHQJw33fWMCLd1fZQoaAZoCWgPQwjP29jsSOJRQJSGlFKUaBVL1WgWR0CcOzW56MR6dX2UKGgGaAloD0MI3eo56X1ycECUhpRSlGgVTUwBaBZHQJw75p1zQu51fZQoaAZoCWgPQwgRxHk4AfhrQJSGlFKUaBVNxQFoFkdAnDwaF7D2rXV9lChoBmgJaA9DCPmDgefeyG1AlIaUUpRoFU0LA2gWR0CcPDNxEORUdX2UKGgGaAloD0MIeuQPBp7HcUCUhpRSlGgVTWcBaBZHQJw9CKqGUOd1fZQoaAZoCWgPQwjQ8jy4O5JuQJSGlFKUaBVNXgFoFkdAnD0PeYUnHHV9lChoBmgJaA9DCM7fhEKEK3FAlIaUUpRoFU1yAWgWR0CcPi9AX2ugdX2UKGgGaAloD0MIV7Q5zu3JbUCUhpRSlGgVTS0BaBZHQJxDnvOQhfV1fZQoaAZoCWgPQwjni70XXypwQJSGlFKUaBVNkAFoFkdAnEU/TXrdFnV9lChoBmgJaA9DCBvV6UAWcHFAlIaUUpRoFU2jAWgWR0CcRYE9dNWVdX2UKGgGaAloD0MIJ2a9GEqqcUCUhpRSlGgVTR0CaBZHQJxGCLCN0eV1fZQoaAZoCWgPQwiie9Y1GsxwQJSGlFKUaBVNKQFoFkdAnEZr2Dg62nV9lChoBmgJaA9DCJELzuDvwW1AlIaUUpRoFU0mAWgWR0CcR2hf0EowdX2UKGgGaAloD0MIzXfwEweUMkCUhpRSlGgVS9ZoFkdAnEfo8EFGG3V9lChoBmgJaA9DCK8/ic9dAnJAlIaUUpRoFU2GAWgWR0CcSAtZV4ordX2UKGgGaAloD0MI5ZfBGBHLcECUhpRSlGgVTRMBaBZHQJxLf/Mnqml1fZQoaAZoCWgPQwhLWvENRZ5xQJSGlFKUaBVNzAFoFkdAnGccuOCGvnV9lChoBmgJaA9DCOlGWFREoXBAlIaUUpRoFU2bAWgWR0CcZ3jqv/zbdX2UKGgGaAloD0MIrkoi+2AccUCUhpRSlGgVTUQBaBZHQJxo8tf5ULl1fZQoaAZoCWgPQwhcyCO40WJwQJSGlFKUaBVNbQFoFkdAnGkXVPN3XHV9lChoBmgJaA9DCJWBA1q6njNAlIaUUpRoFUviaBZHQJxp1byH2yt1fZQoaAZoCWgPQwh/v5gt2aFwQJSGlFKUaBVNfAFoFkdAnGooVymygXV9lChoBmgJaA9DCHB4QURqim5AlIaUUpRoFU1TAWgWR0CcaqpBHCoCdX2UKGgGaAloD0MI0m2JXHCzckCUhpRSlGgVTX4BaBZHQJxrHkxREWt1fZQoaAZoCWgPQwhCtcGJ6M1vQJSGlFKUaBVNCwFoFkdAnGwgwsXiznV9lChoBmgJaA9DCBfZzvcTKXBAlIaUUpRoFU0pAWgWR0CcbbaSs8xLdX2UKGgGaAloD0MIpkdTPZm+cECUhpRSlGgVTUYBaBZHQJxuZUADJU51fZQoaAZoCWgPQwidZKvLqXVwQJSGlFKUaBVNIwFoFkdAnG7NweeWfXV9lChoBmgJaA9DCCR9WkU/wHFAlIaUUpRoFU1QAWgWR0Ccb3jR2KVIdX2UKGgGaAloD0MIJQUWwBQUbUCUhpRSlGgVTT4BaBZHQJxv6ugYgq51fZQoaAZoCWgPQwiu9UVCW6xsQJSGlFKUaBVNYgFoFkdAnHDKjFhod3V9lChoBmgJaA9DCBQhdTt7xmtAlIaUUpRoFU0EAWgWR0CccUdgfEGadX2UKGgGaAloD0MIdVlMbD6/cUCUhpRSlGgVTRQBaBZHQJxxmmk30f51fZQoaAZoCWgPQwhzZyYYzm5yQJSGlFKUaBVNGgFoFkdAnHStOqNp/XV9lChoBmgJaA9DCJuqe2RzYTdAlIaUUpRoFUvsaBZHQJx1p0W/JvJ1fZQoaAZoCWgPQwidRloqL41wQJSGlFKUaBVNKgFoFkdAnHXjkp7TlXV9lChoBmgJaA9DCLu3IjFBl3BAlIaUUpRoFU1OAWgWR0Ccdjt7rs0IdX2UKGgGaAloD0MIKGA7GHF6ckCUhpRSlGgVTTIBaBZHQJx23cJtzjp1fZQoaAZoCWgPQwhafuAqT4BCQJSGlFKUaBVL22gWR0Ccdue7+T/ydX2UKGgGaAloD0MI1GGFW76tbUCUhpRSlGgVTT4BaBZHQJx35FRYRul1fZQoaAZoCWgPQwhqa0QwjhhyQJSGlFKUaBVNKQFoFkdAnHtcAWBSUHV9lChoBmgJaA9DCKVlpN5T6UVAlIaUUpRoFUvfaBZHQJx7cMy8BdV1fZQoaAZoCWgPQwgu/rYnCPhyQJSGlFKUaBVNIAFoFkdAnHxRWT5ft3V9lChoBmgJaA9DCDoGZK83kXJAlIaUUpRoFU0oAWgWR0CcfeqYqoZRdX2UKGgGaAloD0MI4ZUkzzVvcECUhpRSlGgVTR8BaBZHQJx+DzGxUvR1fZQoaAZoCWgPQwgBhXr6yBFyQJSGlFKUaBVNlAFoFkdAnIAFLeyiVXV9lChoBmgJaA9DCCL99nXgID9AlIaUUpRoFUvTaBZHQJyASM2m52B1fZQoaAZoCWgPQwh5lEp4Qt9MQJSGlFKUaBVL/mgWR0CcgbUo8ZDRdX2UKGgGaAloD0MIgSOBBps4SECUhpRSlGgVS9poFkdAnIHTaXa8H3V9lChoBmgJaA9DCOlJmdRQOm9AlIaUUpRoFU0sAWgWR0CcglFdcB2fdX2UKGgGaAloD0MIR3L5D2leb0CUhpRSlGgVTbABaBZHQJyCm42CNCJ1fZQoaAZoCWgPQwiZnNoZ5uFwQJSGlFKUaBVNLgFoFkdAnISRaouPFXV9lChoBmgJaA9DCNVbA1slfVBAlIaUUpRoFUvUaBZHQJyGOd9Ujs51fZQoaAZoCWgPQwjudygKtAByQJSGlFKUaBVNdgFoFkdAnIbPPszEaXV9lChoBmgJaA9DCLmLMEW5NE5AlIaUUpRoFUvqaBZHQJyIiotL+P11fZQoaAZoCWgPQwiIuDmVDGQ0QJSGlFKUaBVL9GgWR0CciyCUornUdX2UKGgGaAloD0MICD2bVR/EckCUhpRSlGgVTWkBaBZHQJyL17LMcIZ1fZQoaAZoCWgPQwjNH9Pa9BJwQJSGlFKUaBVNCwFoFkdAnIvyfDk2gnV9lChoBmgJaA9DCEhRZ+6hnnFAlIaUUpRoFU2FAWgWR0CcjPzUZvUCdX2UKGgGaAloD0MIgEkqU0ySa0CUhpRSlGgVTXABaBZHQJyOfesPrfN1fZQoaAZoCWgPQwiwyoXKP4tyQJSGlFKUaBVNLgFoFkdAnI7wlF+d9XV9lChoBmgJaA9DCIi4OZWMwG9AlIaUUpRoFU0iAWgWR0CcjwuLrHENdX2UKGgGaAloD0MIA+li00oYVUCUhpRSlGgVS8JoFkdAnI8joIOYpnV9lChoBmgJaA9DCA+Z8iEoSXJAlIaUUpRoFU0wAWgWR0CcjytRNyo5dX2UKGgGaAloD0MI1EZ1OhBbcUCUhpRSlGgVTREBaBZHQJyQMzN2TxJ1fZQoaAZoCWgPQwgPR1fp7qdhQJSGlFKUaBVN6ANoFkdAnJB1UhmoSHV9lChoBmgJaA9DCP2GiQYp3nFAlIaUUpRoFU1QAWgWR0CckOZCv5gxdX2UKGgGaAloD0MIOpD11GorcUCUhpRSlGgVTRQBaBZHQJyRf8hs67x1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_lander_hfcourse_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8dca81c05e63ea3590bcb52bc902537508b8c08d7f5da054076db6fe8b802c3
3
+ size 87929
lunar_lander_hfcourse_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f662886add96c80e9abfd5a24a7837650588daa150394062a59874585d62c88b
3
+ size 43393
lunar_lander_hfcourse_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_hfcourse_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (199 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.96976109116332, "std_reward": 62.391925286696825, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T07:25:48.339755"}