--- base_model: AIRI-Institute/gena-lm-bert-base-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC results: [] --- # gena-lm-bert-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7056 - F1 Score: 0.1876 - Precision: 0.5195 - Recall: 0.1145 - Accuracy: 0.4764 - Auc: 0.4935 - Prc: 0.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.7004 | 0.0840 | 500 | 0.7056 | 0.1876 | 0.5195 | 0.1145 | 0.4764 | 0.4935 | 0.5260 | | 0.6952 | 0.1680 | 1000 | 0.7056 | 0.1876 | 0.5195 | 0.1145 | 0.4764 | 0.4935 | 0.5260 | | 0.6977 | 0.2520 | 1500 | 0.7056 | 0.1876 | 0.5195 | 0.1145 | 0.4764 | 0.4935 | 0.5260 | | 0.7008 | 0.3360 | 2000 | 0.7056 | 0.1876 | 0.5195 | 0.1145 | 0.4764 | 0.4935 | 0.5260 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0