--- library_name: transformers base_model: AIRI-Institute/gena-lm-bert-large-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-large-t2t_ft_BioS74_1kbpHG19_DHSs_H3K27AC_one_shot results: [] --- # gena-lm-bert-large-t2t_ft_BioS74_1kbpHG19_DHSs_H3K27AC_one_shot This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9119 - F1 Score: 0.6842 - Precision: 0.7222 - Recall: 0.65 - Accuracy: 0.6842 - Auc: 0.7528 - Prc: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4776 | 13.1579 | 500 | 0.9119 | 0.6842 | 0.7222 | 0.65 | 0.6842 | 0.7528 | 0.8171 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.18.0 - Tokenizers 0.20.0