andrecornman
commited on
Commit
•
5b795bf
1
Parent(s):
03cfbbb
Upload gLM2ForMaskedLM
Browse files- config.json +20 -0
- configuration_glm2.py +37 -0
- model.safetensors +3 -0
- modeling_glm2.py +565 -0
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"gLM2ForMaskedLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_glm2.gLM2Config",
|
7 |
+
"AutoModel": "modeling_glm2.gLM2Model",
|
8 |
+
"AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM"
|
9 |
+
},
|
10 |
+
"depth": 30,
|
11 |
+
"dim": 640,
|
12 |
+
"ffn_dim_multiplier": null,
|
13 |
+
"heads": 10,
|
14 |
+
"model_type": "gLM2",
|
15 |
+
"norm_eps": 1e-05,
|
16 |
+
"swiglu_multiple_of": 256,
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.36.0",
|
19 |
+
"vocab_size": 37
|
20 |
+
}
|
configuration_glm2.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""gLM2 model configuration"""
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class gLM2Config(PretrainedConfig):
|
11 |
+
model_type = "gLM2"
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
dim: int = 640,
|
16 |
+
depth: int = 30,
|
17 |
+
heads: int = 10,
|
18 |
+
vocab_size: int = 37,
|
19 |
+
swiglu_multiple_of: int = 256,
|
20 |
+
ffn_dim_multiplier: Optional[float] = None,
|
21 |
+
norm_eps: float = 1e-5,
|
22 |
+
**kwargs
|
23 |
+
):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.dim = dim
|
26 |
+
self.depth = depth
|
27 |
+
self.heads = heads
|
28 |
+
self.vocab_size = vocab_size
|
29 |
+
self.swiglu_multiple_of = swiglu_multiple_of
|
30 |
+
self.ffn_dim_multiplier = ffn_dim_multiplier
|
31 |
+
self.norm_eps = norm_eps
|
32 |
+
|
33 |
+
self.auto_map = {
|
34 |
+
"AutoConfig": "configuration_glm2.gLM2Config",
|
35 |
+
"AutoModel": "modeling_glm2.gLM2Model",
|
36 |
+
"AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM"
|
37 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047facd39472afe082c985058fa042f43a7b10d4ffb2ab51b9a3e6c63e9f3834
|
3 |
+
size 609855088
|
modeling_glm2.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch gLM2 model.
|
2 |
+
|
3 |
+
Requires flash attention.
|
4 |
+
Some modules adapted from:
|
5 |
+
https://github.com/meta-llama/llama/blob/main/llama/model.py
|
6 |
+
"""
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from einops import rearrange
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
BaseModelOutput,
|
15 |
+
MaskedLMOutput,
|
16 |
+
)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
try:
|
21 |
+
from flash_attn.ops.activations import swiglu
|
22 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func
|
23 |
+
from flash_attn import (
|
24 |
+
flash_attn_kvpacked_func,
|
25 |
+
flash_attn_varlen_kvpacked_func,
|
26 |
+
)
|
27 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
28 |
+
from flash_attn.ops.triton.layer_norm import RMSNorm
|
29 |
+
except ImportError:
|
30 |
+
raise ImportError(
|
31 |
+
"gLM2 requires flash attention: `pip install flash-attn --no-build-isolation`")
|
32 |
+
|
33 |
+
from .configuration_glm2 import gLM2Config
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
class RotaryEmbedding(torch.nn.Module):
|
40 |
+
"""
|
41 |
+
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
42 |
+
Changed to only support passing in q or k individually, so that we can use varlen rotary.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
dim: int,
|
48 |
+
base=10000.0,
|
49 |
+
interleaved=False,
|
50 |
+
scale_base=None,
|
51 |
+
pos_idx_in_fp32=True,
|
52 |
+
device=None,
|
53 |
+
):
|
54 |
+
super().__init__()
|
55 |
+
self.dim = dim
|
56 |
+
self.base = float(base)
|
57 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
58 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
59 |
+
inv_freq = self._compute_inv_freq(device)
|
60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
61 |
+
self.interleaved = interleaved
|
62 |
+
self.scale_base = scale_base
|
63 |
+
scale = (
|
64 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
65 |
+
/ (1.4 * dim)
|
66 |
+
if scale_base is not None
|
67 |
+
else None
|
68 |
+
)
|
69 |
+
self.register_buffer("scale", scale, persistent=False)
|
70 |
+
|
71 |
+
self._seq_len_cached = 0
|
72 |
+
self._cos_cached = None
|
73 |
+
self._sin_cached = None
|
74 |
+
self._cos_k_cached = None
|
75 |
+
self._sin_k_cached = None
|
76 |
+
|
77 |
+
def _compute_inv_freq(self, device=None):
|
78 |
+
return 1.0 / (
|
79 |
+
self.base
|
80 |
+
** (
|
81 |
+
torch.arange(0, self.dim, 2, device=device,
|
82 |
+
dtype=torch.float32)
|
83 |
+
/ self.dim
|
84 |
+
)
|
85 |
+
)
|
86 |
+
|
87 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
88 |
+
# Reset the tables if the sequence length has changed,
|
89 |
+
# if we're on a new device (possibly due to tracing for instance),
|
90 |
+
# or if we're switching from inference mode to training
|
91 |
+
if (
|
92 |
+
seqlen > self._seq_len_cached
|
93 |
+
or self._cos_cached is None
|
94 |
+
or self._cos_cached.device != device
|
95 |
+
or self._cos_cached.dtype != dtype
|
96 |
+
or (self.training and self._cos_cached.is_inference())
|
97 |
+
):
|
98 |
+
self._seq_len_cached = seqlen
|
99 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
100 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
101 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
102 |
+
if self.pos_idx_in_fp32:
|
103 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
104 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
105 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
106 |
+
# cos & sin output to change significantly.
|
107 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
108 |
+
if self.inv_freq.dtype != torch.float32:
|
109 |
+
inv_freq = self._compute_inv_freq(device=device)
|
110 |
+
else:
|
111 |
+
inv_freq = self.inv_freq
|
112 |
+
else:
|
113 |
+
t = torch.arange(seqlen, device=device,
|
114 |
+
dtype=self.inv_freq.dtype)
|
115 |
+
inv_freq = self.inv_freq
|
116 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
117 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
118 |
+
freqs = torch.outer(t, inv_freq)
|
119 |
+
if self.scale is None:
|
120 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
121 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
122 |
+
else:
|
123 |
+
power = (
|
124 |
+
torch.arange(
|
125 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
126 |
+
)
|
127 |
+
- seqlen // 2
|
128 |
+
) / self.scale_base
|
129 |
+
scale = self.scale.to(device=power.device) ** rearrange(
|
130 |
+
power, "s -> s 1"
|
131 |
+
)
|
132 |
+
# We want the multiplication by scale to happen in fp32
|
133 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
134 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
135 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
136 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
137 |
+
|
138 |
+
def forward(
|
139 |
+
self,
|
140 |
+
q: torch.Tensor,
|
141 |
+
k: torch.Tensor,
|
142 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
143 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
144 |
+
max_seqlen: Optional[int] = None,
|
145 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
146 |
+
"""
|
147 |
+
q: (batch, seqlen, nheads, headdim). If cu_seqlens is not None,
|
148 |
+
shape (total_seqlen, nheads, headdim).
|
149 |
+
k: (batch, seqlen, nheads, headdim). If cu_seqlens is not None,
|
150 |
+
shape (total_seqlen, nheads, headdim).
|
151 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
152 |
+
Most commonly used in inference when we have KV cache.
|
153 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
154 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
155 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
156 |
+
"""
|
157 |
+
if cu_seqlens is not None:
|
158 |
+
assert max_seqlen is not None
|
159 |
+
seqlen = q.shape[1] if max_seqlen is None else max_seqlen
|
160 |
+
if max_seqlen is not None:
|
161 |
+
self._update_cos_sin_cache(
|
162 |
+
max_seqlen, device=q.device, dtype=q.dtype)
|
163 |
+
elif isinstance(seqlen_offset, int):
|
164 |
+
self._update_cos_sin_cache(
|
165 |
+
seqlen + seqlen_offset, device=q.device, dtype=q.dtype
|
166 |
+
)
|
167 |
+
q = apply_rotary_emb_func(
|
168 |
+
q,
|
169 |
+
self._cos_cached,
|
170 |
+
self._sin_cached,
|
171 |
+
interleaved=self.interleaved,
|
172 |
+
inplace=True,
|
173 |
+
seqlen_offsets=seqlen_offset,
|
174 |
+
cu_seqlens=cu_seqlens,
|
175 |
+
max_seqlen=max_seqlen,
|
176 |
+
)
|
177 |
+
if self.scale is None:
|
178 |
+
k = apply_rotary_emb_func(
|
179 |
+
k,
|
180 |
+
self._cos_cached,
|
181 |
+
self._sin_cached,
|
182 |
+
interleaved=self.interleaved,
|
183 |
+
inplace=True,
|
184 |
+
seqlen_offsets=seqlen_offset,
|
185 |
+
cu_seqlens=cu_seqlens,
|
186 |
+
max_seqlen=max_seqlen,
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
k = apply_rotary_emb_func(
|
190 |
+
k,
|
191 |
+
self._cos_k_cached,
|
192 |
+
self._sin_k_cached,
|
193 |
+
interleaved=self.interleaved,
|
194 |
+
inplace=True,
|
195 |
+
seqlen_offsets=seqlen_offset,
|
196 |
+
cu_seqlens=cu_seqlens,
|
197 |
+
max_seqlen=max_seqlen,
|
198 |
+
)
|
199 |
+
return q, k
|
200 |
+
|
201 |
+
|
202 |
+
# @torch.jit.script
|
203 |
+
# def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
204 |
+
# """Apply the root mean square normalization."""
|
205 |
+
# input_dtype = hidden_states.dtype
|
206 |
+
# hidden_states = hidden_states.to(torch.float32)
|
207 |
+
# variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
208 |
+
# hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
209 |
+
# return (weight * hidden_states).to(input_dtype)
|
210 |
+
|
211 |
+
|
212 |
+
# class RMSNorm(nn.Module):
|
213 |
+
# """Root mean square normalization."""
|
214 |
+
|
215 |
+
# def __init__(self, dim, eps=1e-6):
|
216 |
+
# super().__init__()
|
217 |
+
# self.weight = nn.Parameter(torch.ones(dim))
|
218 |
+
# self.register_buffer(
|
219 |
+
# "variance_epsilon",
|
220 |
+
# torch.tensor(eps),
|
221 |
+
# persistent=False,
|
222 |
+
# )
|
223 |
+
|
224 |
+
# def forward(self, hidden_states):
|
225 |
+
# return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
226 |
+
|
227 |
+
|
228 |
+
class Attention(nn.Module):
|
229 |
+
"""Multi-head attention module."""
|
230 |
+
|
231 |
+
def __init__(self, config: gLM2Config):
|
232 |
+
super().__init__()
|
233 |
+
self.n_heads = config.heads
|
234 |
+
self.head_dim = config.dim // config.heads
|
235 |
+
|
236 |
+
self.wqkv = nn.Linear(config.dim, self.n_heads *
|
237 |
+
self.head_dim * 3, bias=False)
|
238 |
+
self.wo = nn.Linear(config.heads * self.head_dim,
|
239 |
+
config.dim, bias=False)
|
240 |
+
|
241 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
242 |
+
|
243 |
+
def _forward_varlen(
|
244 |
+
self,
|
245 |
+
x: torch.Tensor,
|
246 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
247 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
248 |
+
) -> torch.Tensor:
|
249 |
+
total_seqlen, h_size = x.shape
|
250 |
+
qkv = self.wqkv(x)
|
251 |
+
q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1)
|
252 |
+
|
253 |
+
q = q.view(total_seqlen, self.n_heads, self.head_dim)
|
254 |
+
k = k.view(total_seqlen, self.n_heads, self.head_dim)
|
255 |
+
v = v.view(total_seqlen, self.n_heads, self.head_dim)
|
256 |
+
|
257 |
+
q, k = self.rotary_emb(
|
258 |
+
q, k, cu_seqlens=cu_seqlens, max_seqlen=max_seq_len)
|
259 |
+
|
260 |
+
# (seqlen, 2, n_heads, head_dim)
|
261 |
+
kv = torch.stack([k, v], 1)
|
262 |
+
|
263 |
+
# (seqlen, n_heads, head_dim)
|
264 |
+
output = flash_attn_varlen_kvpacked_func(
|
265 |
+
q,
|
266 |
+
kv,
|
267 |
+
cu_seqlens_q=cu_seqlens,
|
268 |
+
cu_seqlens_k=cu_seqlens,
|
269 |
+
max_seqlen_q=max_seq_len,
|
270 |
+
max_seqlen_k=max_seq_len,
|
271 |
+
dropout_p=0.0,
|
272 |
+
causal=False,
|
273 |
+
)
|
274 |
+
output = output.view(total_seqlen, h_size)
|
275 |
+
return self.wo(output)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
x: torch.Tensor,
|
280 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
281 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
282 |
+
) -> torch.Tensor:
|
283 |
+
if cu_seqlens is not None:
|
284 |
+
assert max_seq_len is not None
|
285 |
+
return self._forward_varlen(x, cu_seqlens, max_seq_len)
|
286 |
+
|
287 |
+
bsz, seqlen, h_size = x.shape
|
288 |
+
qkv = self.wqkv(x)
|
289 |
+
q, k, v = torch.split(qkv, self.n_heads * self.head_dim, dim=-1)
|
290 |
+
q = q.view(bsz, seqlen, self.n_heads, self.head_dim)
|
291 |
+
k = k.view(bsz, seqlen, self.n_heads, self.head_dim)
|
292 |
+
v = v.view(bsz, seqlen, self.n_heads, self.head_dim)
|
293 |
+
|
294 |
+
q, k = self.rotary_emb(q, k)
|
295 |
+
# (bs, seqlen, 2, n_heads, head_dim)
|
296 |
+
kv = torch.stack([k, v], 2)
|
297 |
+
|
298 |
+
output = flash_attn_kvpacked_func(
|
299 |
+
q,
|
300 |
+
kv,
|
301 |
+
dropout_p=0.0,
|
302 |
+
causal=False,
|
303 |
+
)
|
304 |
+
output = output.view(bsz, seqlen, h_size)
|
305 |
+
return self.wo(output)
|
306 |
+
|
307 |
+
|
308 |
+
class FeedForward(nn.Module):
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
dim: int,
|
312 |
+
hidden_dim: int,
|
313 |
+
multiple_of: int,
|
314 |
+
ffn_dim_multiplier: Optional[float],
|
315 |
+
):
|
316 |
+
"""
|
317 |
+
SwiGLU FeedForward module.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
dim (int): Input dimension.
|
321 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
322 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
323 |
+
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
324 |
+
"""
|
325 |
+
super().__init__()
|
326 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
327 |
+
# custom dim factor multiplier
|
328 |
+
if ffn_dim_multiplier is not None:
|
329 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
330 |
+
hidden_dim = multiple_of * \
|
331 |
+
((hidden_dim + multiple_of - 1) // multiple_of)
|
332 |
+
|
333 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
334 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
335 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
336 |
+
|
337 |
+
def forward(self, x):
|
338 |
+
return self.w2(swiglu(self.w1(x), self.w3(x)))
|
339 |
+
|
340 |
+
|
341 |
+
class TransformerBlock(nn.Module):
|
342 |
+
def __init__(self, config: gLM2Config):
|
343 |
+
super().__init__()
|
344 |
+
self.n_heads = config.heads
|
345 |
+
self.dim = config.dim
|
346 |
+
self.head_dim = config.dim // config.heads
|
347 |
+
self.attention = Attention(config)
|
348 |
+
self.feed_forward = FeedForward(
|
349 |
+
dim=config.dim,
|
350 |
+
hidden_dim=4 * config.dim,
|
351 |
+
multiple_of=config.swiglu_multiple_of,
|
352 |
+
ffn_dim_multiplier=config.ffn_dim_multiplier,
|
353 |
+
)
|
354 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
355 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
356 |
+
|
357 |
+
def forward(
|
358 |
+
self,
|
359 |
+
x: torch.Tensor,
|
360 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
361 |
+
max_seq_len: Optional[torch.Tensor] = None,
|
362 |
+
) -> torch.Tensor:
|
363 |
+
r = self.attention(
|
364 |
+
self.attention_norm(x), cu_seqlens, max_seq_len
|
365 |
+
)
|
366 |
+
h = x + r
|
367 |
+
r = self.feed_forward(self.ffn_norm(h))
|
368 |
+
out = h + r
|
369 |
+
return out
|
370 |
+
|
371 |
+
|
372 |
+
class TransformerLayers(nn.Module):
|
373 |
+
def __init__(self, config: gLM2Config):
|
374 |
+
super().__init__()
|
375 |
+
self.config = config
|
376 |
+
self.layers = torch.nn.ModuleList(
|
377 |
+
[TransformerBlock(config=config) for _ in range(config.depth)]
|
378 |
+
)
|
379 |
+
self.apply(self._init_weights)
|
380 |
+
# Apply special scaled init to the residual projections, per GPT-2 paper.
|
381 |
+
# Weight w2 is output of FeedForward. Weight wo is output of Attention.
|
382 |
+
for pn, p in self.named_parameters():
|
383 |
+
if pn.endswith('w2.weight') or pn.endswith('wo.weight'):
|
384 |
+
torch.nn.init.normal_(
|
385 |
+
p, mean=0.0, std=0.02/math.sqrt(2 * self.config.depth))
|
386 |
+
|
387 |
+
def _init_weights(self, module):
|
388 |
+
if isinstance(module, nn.Linear):
|
389 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
390 |
+
if module.bias is not None:
|
391 |
+
torch.nn.init.zeros_(module.bias)
|
392 |
+
|
393 |
+
def forward(
|
394 |
+
self,
|
395 |
+
x: torch.FloatTensor,
|
396 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
397 |
+
return_all_hiddens: bool = False,
|
398 |
+
):
|
399 |
+
if x.shape[-1] != self.config.dim:
|
400 |
+
raise ValueError(
|
401 |
+
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
|
402 |
+
)
|
403 |
+
batch_size, seq_len = x.shape[:2]
|
404 |
+
should_unpad = attention_mask is not None and not attention_mask.all()
|
405 |
+
if should_unpad:
|
406 |
+
x, indices, cu_seqlens, max_seq_len_in_batch = unpad_input(
|
407 |
+
x, attention_mask
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
indices, cu_seqlens, max_seq_len_in_batch = None, None, None
|
411 |
+
hiddens = []
|
412 |
+
for layer in self.layers:
|
413 |
+
x = layer(x, cu_seqlens, max_seq_len_in_batch)
|
414 |
+
if return_all_hiddens:
|
415 |
+
hiddens.append(x)
|
416 |
+
|
417 |
+
if should_unpad:
|
418 |
+
x = pad_input(x, indices, batch_size, seq_len)
|
419 |
+
if return_all_hiddens:
|
420 |
+
hiddens = [pad_input(h, indices, batch_size, seq_len)
|
421 |
+
for h in hiddens]
|
422 |
+
|
423 |
+
if return_all_hiddens:
|
424 |
+
return x, hiddens
|
425 |
+
return x
|
426 |
+
|
427 |
+
|
428 |
+
class gLM2PreTrainedModel(PreTrainedModel):
|
429 |
+
"""
|
430 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
431 |
+
models.
|
432 |
+
"""
|
433 |
+
config_class = gLM2Config
|
434 |
+
base_model_prefix = "glm2"
|
435 |
+
supports_gradient_checkpointing = False
|
436 |
+
|
437 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
438 |
+
def _init_weights(module, initializer_range=0.02):
|
439 |
+
if isinstance(module, nn.Linear):
|
440 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
441 |
+
if module.bias is not None:
|
442 |
+
nn.init.zeros_(module.bias)
|
443 |
+
elif isinstance(module, nn.Embedding):
|
444 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
445 |
+
if module.padding_idx is not None:
|
446 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
447 |
+
|
448 |
+
|
449 |
+
class gLM2Model(gLM2PreTrainedModel):
|
450 |
+
"""gLM2 Model."""
|
451 |
+
|
452 |
+
def __init__(self, config: gLM2Config):
|
453 |
+
super().__init__(config)
|
454 |
+
self.config = config
|
455 |
+
|
456 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
457 |
+
self._init_weights(self.tok_embeddings)
|
458 |
+
self.encoder = TransformerLayers(config)
|
459 |
+
|
460 |
+
def _init_weights(self, module):
|
461 |
+
if isinstance(module, nn.Linear):
|
462 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
463 |
+
if module.bias is not None:
|
464 |
+
torch.nn.init.zeros_(module.bias)
|
465 |
+
elif isinstance(module, nn.Embedding):
|
466 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
467 |
+
|
468 |
+
def forward(
|
469 |
+
self,
|
470 |
+
input_ids: torch.Tensor,
|
471 |
+
attention_mask: Optional[torch.Tensor] = None,
|
472 |
+
output_hidden_states: Optional[bool] = None,
|
473 |
+
return_dict: Optional[bool] = None,
|
474 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
475 |
+
output_hidden_states = (
|
476 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
477 |
+
)
|
478 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
479 |
+
|
480 |
+
h = self.tok_embeddings(input_ids)
|
481 |
+
if output_hidden_states:
|
482 |
+
sequence_output, all_hidden_states = self.encoder(
|
483 |
+
h, attention_mask, return_all_hiddens=True)
|
484 |
+
else:
|
485 |
+
sequence_output = self.encoder(h, attention_mask)
|
486 |
+
all_hidden_states = None
|
487 |
+
|
488 |
+
if not return_dict:
|
489 |
+
return (sequence_output, all_hidden_states)
|
490 |
+
|
491 |
+
return BaseModelOutput(
|
492 |
+
last_hidden_state=sequence_output,
|
493 |
+
hidden_states=all_hidden_states,
|
494 |
+
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
class gLM2ForMaskedLM(gLM2PreTrainedModel):
|
499 |
+
|
500 |
+
def __init__(self, config: gLM2Config):
|
501 |
+
super().__init__(config)
|
502 |
+
|
503 |
+
self.glm2 = gLM2Model(config)
|
504 |
+
self.lm_head = gLM2LMHead(config)
|
505 |
+
self._init_weights(self.lm_head)
|
506 |
+
|
507 |
+
def _init_weights(self, module):
|
508 |
+
if isinstance(module, nn.Linear):
|
509 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
510 |
+
if module.bias is not None:
|
511 |
+
torch.nn.init.zeros_(module.bias)
|
512 |
+
elif isinstance(module, nn.Embedding):
|
513 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
514 |
+
|
515 |
+
def forward(
|
516 |
+
self,
|
517 |
+
input_ids: torch.Tensor,
|
518 |
+
attention_mask: Optional[torch.Tensor] = None,
|
519 |
+
labels: Optional[torch.LongTensor] = None,
|
520 |
+
output_hidden_states: Optional[bool] = None,
|
521 |
+
return_dict: Optional[bool] = None,
|
522 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
523 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
524 |
+
|
525 |
+
outputs = self.glm2(
|
526 |
+
input_ids,
|
527 |
+
attention_mask=attention_mask,
|
528 |
+
output_hidden_states=output_hidden_states,
|
529 |
+
return_dict=return_dict,
|
530 |
+
)
|
531 |
+
sequence_output = outputs[0]
|
532 |
+
prediction_scores = self.lm_head(sequence_output)
|
533 |
+
|
534 |
+
masked_lm_loss = None
|
535 |
+
if labels is not None:
|
536 |
+
loss_fct = CrossEntropyLoss()
|
537 |
+
|
538 |
+
labels = labels.to(prediction_scores.device)
|
539 |
+
masked_lm_loss = loss_fct(
|
540 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
541 |
+
|
542 |
+
if not return_dict:
|
543 |
+
output = (prediction_scores,) + outputs[2:]
|
544 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
545 |
+
|
546 |
+
return MaskedLMOutput(
|
547 |
+
loss=masked_lm_loss,
|
548 |
+
logits=prediction_scores,
|
549 |
+
hidden_states=outputs.hidden_states,
|
550 |
+
attentions=outputs.attentions,
|
551 |
+
)
|
552 |
+
|
553 |
+
|
554 |
+
class gLM2LMHead(nn.Module):
|
555 |
+
"""gLM2 head for masked language modeling."""
|
556 |
+
|
557 |
+
def __init__(self, config):
|
558 |
+
super().__init__()
|
559 |
+
|
560 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
561 |
+
self.proj_output = nn.Linear(
|
562 |
+
config.dim, config.vocab_size, bias=False)
|
563 |
+
|
564 |
+
def forward(self, features):
|
565 |
+
return self.proj_output(self.norm(features))
|