andrecornman
commited on
Commit
•
421e981
1
Parent(s):
4fae203
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,85 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
-
## Citation
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- tattabio/OMG
|
4 |
+
license: apache-2.0
|
5 |
---
|
6 |
|
7 |
+
# gLM2_650M
|
8 |
|
9 |
+
gLM2 is a mixed-modality genomic language model, trained on the [`OMG Dataset`](https://huggingface.co/datasets/tattabio/OMG).
|
10 |
+
The model encodes a genomic scaffold with both both amino-acid and DNA tokens.
|
11 |
|
12 |
+
gLM2 is trained at two scales: 150M (available at [`tattabio/gLM2_150M`](https://huggingface.co/tattabio/gLM2_150M)) and 650M parameters.
|
13 |
|
14 |
+
See [https://github.com/TattaBio/gLM2](https://github.com/TattaBio/gLM2) for inference scripts.
|
|
|
15 |
|
16 |
### Model Description
|
17 |
|
18 |
+
gLM2 is a transformer encoder trained with the masked language modeling objective.
|
19 |
+
It encodes a genomic contig as a sequence of protein coding sequences (CDS) and DNA inter-genic sequences (IGS).
|
20 |
+
CDS elements are tokenized using per-amino acid tokens, and IGS elements are tokenized using per-nucleotide tokens.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
+
- To encode the genomic strand, we prepended each genomic element with a special token, either `<+>` or `<->` to indicate the positive and negative strands.
|
24 |
+
- To avoid collision between amino acid and nucleotide tokens, the tokenizer expects all amino acids to be uppercase, and all nucleotides to be lowercase.
|
25 |
|
26 |
+
UPDATE(09/2024): We updated the model with longer context length (4096 tokens vs. 2048 tokens) and per-nucleotide IGS tokenization instead of BPE.
|
27 |
|
28 |
+
## Getting Started
|
29 |
|
|
|
30 |
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
from transformers import AutoModel, AutoTokenizer
|
34 |
|
35 |
+
model = AutoModel.from_pretrained('tattabio/gLM2_650M', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('tattabio/gLM2_650M', trust_remote_code=True)
|
37 |
|
38 |
+
# A contig with two proteins and an inter-genic sequence.
|
39 |
+
# NOTE: Nucleotides should always be lowercase, and prepended with `<+>`.
|
40 |
+
sequence = "<+>MALTKVEKRNRIKRRVRGKISGTQASPRLSVYKSNK<+>aatttaaggaa<->MLGIDNIERVKPGGLELVDRLVAVNRVTKVTKGGRAFGFSAIVVVGNED"
|
41 |
|
42 |
+
# Tokenize the sequence.
|
43 |
+
encodings = tokenizer([sequence], return_tensors='pt')
|
44 |
|
45 |
+
# Extract embeddings.
|
46 |
+
with torch.no_grad():
|
47 |
+
embeddings = model(encodings.input_ids.cuda(), output_hidden_states=True).last_hidden_state
|
48 |
|
49 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
### Training Data
|
52 |
|
53 |
+
gLM2 is trained on the [`OMG`](https://huggingface.co/datasets/tattabio/OMG) dataset.
|
54 |
+
To improve the dataset balance and remove near-duplicate examples, the data is tokenized and pruned by applying Semantic Deduplication [SemDedup](https://arxiv.org/abs/2303.09540).
|
55 |
+
We use an embedding distance threshold of 2e-3, resulting in 49% of the dataset being pruned.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
## Training Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
- Pretraining tokens: 315B
|
60 |
+
- Context length: 4096
|
61 |
+
- Masking rate: 30%
|
62 |
+
- Learning rate: 1e-3
|
63 |
+
- Optimizer: AdamW (betas = (0.9, 0.95))
|
64 |
+
- Mixed precision training: bfloat16
|
65 |
+
- Weight decay: 0.1
|
66 |
|
|
|
67 |
|
68 |
+
## Citation
|
69 |
|
70 |
+
**BioRxiv:**
|
71 |
+
[https://www.biorxiv.org/content/10.1101/2024.08.14.607850](https://www.biorxiv.org/content/10.1101/2024.08.14.607850)
|
72 |
|
73 |
**BibTeX:**
|
74 |
|
75 |
+
```@article {Cornman2024.08.14.607850,
|
76 |
+
author = {Cornman, Andre and West-Roberts, Jacob and Camargo, Antonio Pedro and Roux, Simon and Beracochea, Martin and Mirdita, Milot and Ovchinnikov, Sergey and Hwang, Yunha},
|
77 |
+
title = {The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling},
|
78 |
+
elocation-id = {2024.08.14.607850},
|
79 |
+
year = {2024},
|
80 |
+
doi = {10.1101/2024.08.14.607850},
|
81 |
+
publisher = {Cold Spring Harbor Laboratory},
|
82 |
+
URL = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850},
|
83 |
+
eprint = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850.full.pdf},
|
84 |
+
journal = {bioRxiv}
|
85 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|