Safetensors
gLM2
custom_code
andrecornman commited on
Commit
421e981
1 Parent(s): 4fae203

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -168
README.md CHANGED
@@ -1,199 +1,85 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ datasets:
3
+ - tattabio/OMG
4
+ license: apache-2.0
5
  ---
6
 
7
+ # gLM2_650M
8
 
9
+ gLM2 is a mixed-modality genomic language model, trained on the [`OMG Dataset`](https://huggingface.co/datasets/tattabio/OMG).
10
+ The model encodes a genomic scaffold with both both amino-acid and DNA tokens.
11
 
12
+ gLM2 is trained at two scales: 150M (available at [`tattabio/gLM2_150M`](https://huggingface.co/tattabio/gLM2_150M)) and 650M parameters.
13
 
14
+ See [https://github.com/TattaBio/gLM2](https://github.com/TattaBio/gLM2) for inference scripts.
 
15
 
16
  ### Model Description
17
 
18
+ gLM2 is a transformer encoder trained with the masked language modeling objective.
19
+ It encodes a genomic contig as a sequence of protein coding sequences (CDS) and DNA inter-genic sequences (IGS).
20
+ CDS elements are tokenized using per-amino acid tokens, and IGS elements are tokenized using per-nucleotide tokens.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
22
 
23
+ - To encode the genomic strand, we prepended each genomic element with a special token, either `<+>` or `<->` to indicate the positive and negative strands.
24
+ - To avoid collision between amino acid and nucleotide tokens, the tokenizer expects all amino acids to be uppercase, and all nucleotides to be lowercase.
25
 
26
+ UPDATE(09/2024): We updated the model with longer context length (4096 tokens vs. 2048 tokens) and per-nucleotide IGS tokenization instead of BPE.
27
 
28
+ ## Getting Started
29
 
 
30
 
31
+ ```python
32
+ import torch
33
+ from transformers import AutoModel, AutoTokenizer
34
 
35
+ model = AutoModel.from_pretrained('tattabio/gLM2_650M', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
36
+ tokenizer = AutoTokenizer.from_pretrained('tattabio/gLM2_650M', trust_remote_code=True)
37
 
38
+ # A contig with two proteins and an inter-genic sequence.
39
+ # NOTE: Nucleotides should always be lowercase, and prepended with `<+>`.
40
+ sequence = "<+>MALTKVEKRNRIKRRVRGKISGTQASPRLSVYKSNK<+>aatttaaggaa<->MLGIDNIERVKPGGLELVDRLVAVNRVTKVTKGGRAFGFSAIVVVGNED"
41
 
42
+ # Tokenize the sequence.
43
+ encodings = tokenizer([sequence], return_tensors='pt')
44
 
45
+ # Extract embeddings.
46
+ with torch.no_grad():
47
+ embeddings = model(encodings.input_ids.cuda(), output_hidden_states=True).last_hidden_state
48
 
49
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ### Training Data
52
 
53
+ gLM2 is trained on the [`OMG`](https://huggingface.co/datasets/tattabio/OMG) dataset.
54
+ To improve the dataset balance and remove near-duplicate examples, the data is tokenized and pruned by applying Semantic Deduplication [SemDedup](https://arxiv.org/abs/2303.09540).
55
+ We use an embedding distance threshold of 2e-3, resulting in 49% of the dataset being pruned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ - Pretraining tokens: 315B
60
+ - Context length: 4096
61
+ - Masking rate: 30%
62
+ - Learning rate: 1e-3
63
+ - Optimizer: AdamW (betas = (0.9, 0.95))
64
+ - Mixed precision training: bfloat16
65
+ - Weight decay: 0.1
66
 
 
67
 
68
+ ## Citation
69
 
70
+ **BioRxiv:**
71
+ [https://www.biorxiv.org/content/10.1101/2024.08.14.607850](https://www.biorxiv.org/content/10.1101/2024.08.14.607850)
72
 
73
  **BibTeX:**
74
 
75
+ ```@article {Cornman2024.08.14.607850,
76
+ author = {Cornman, Andre and West-Roberts, Jacob and Camargo, Antonio Pedro and Roux, Simon and Beracochea, Martin and Mirdita, Milot and Ovchinnikov, Sergey and Hwang, Yunha},
77
+ title = {The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling},
78
+ elocation-id = {2024.08.14.607850},
79
+ year = {2024},
80
+ doi = {10.1101/2024.08.14.607850},
81
+ publisher = {Cold Spring Harbor Laboratory},
82
+ URL = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850},
83
+ eprint = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850.full.pdf},
84
+ journal = {bioRxiv}
85
+ }