tayfen commited on
Commit
2427f6b
1 Parent(s): 023e4c2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 749.67 +/- 58.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e49eccca155a5693dacdf87a9a832e0240c0ab4bfc08e9135389fa97b2eca5b
3
+ size 129262
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac82439af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac82439b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac82439c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac82439ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fac82439d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fac82439dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac82439e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac82439ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fac82439f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac8243c040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac8243c0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac8243c160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fac82434660>"
21
+ },
22
+ "verbose": 100,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -3,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674125231302570314,
68
+ "learning_rate": 0.00073,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM0oZ78t2yi+rcQFPx5CJb4TKxY9JoLbPSG3UL5AIgS+DsiJP00i1zxICRG/364WvSHHkr8dXQE9lxc4P6CxuD2L62c/dqoMvXhf9z7Znps9d3uQv7BwKL2YtMG+z4TcvGIPyD7kDao+deCuPmn2qT7IX0e/JbQTP9Irwz57z86+XclAPQDvGj6n5D++tnApPs5rij+RRwS94CoSv0CgJb3Baoq/vMCnvCrgCD8X2xo9KK9TPyQrFT1MWYs+vCqePDmTj79UExw9sVHRvld2Jb1iD8g+5A2qPnXgrj5p9qk+VFcfvxFA5T56EOA+kF6PvvRcNj3azAU+dM0+vpl33L69fUe/WioTubAPXL5CjAm93T0kPy8ZAzxWikc/WD9wPXiU/L7Pp9A7PXAXP4M8Rj3INmQ//7iOOwPSoL2g8w69Yg/IPuQNqj514K4+afapPlMtdb/wjQs/avXKPuJ0jL4m2Rg9RWUCPr6BQb59oES+jOUfP1ZeXruw2BG/uygMvc56FL/GXVQ731I/PwQmfD3keW4+L0Hau7R8Cz+eNmI9G0rzvjjYI7xq+9C+Ief6vGIPyD7kDao+deCuPmn2qT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACri5Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+pOwAAAAB1TPK/AAAAAKML7T0AAAAAvtT+PwAAAAC45bA9AAAAADpgAEAAAAAA1ToFPAAAAADPyO+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8clsgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAw2A74AAAAA1zX6vwAAAABrzHO9AAAAAAeh6T8AAAAA1nhwPAAAAAASJfA/AAAAAJAltT0AAAAASVPwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8rG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAf3A4+AAAAAFZV+r8AAAAAP0GPvAAAAAANJfw/AAAAAEztBD4AAAAA+vfcPwAAAABsxpE9AAAAAI0+4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVmNE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXdvEPQAAAABP1/i/AAAAALGQ5T0AAAAAHLP2PwAAAADJm/Y9AAAAANVj4z8AAAAAh+4LvgAAAADeGuK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsRa5Zr57CMAWyUTegDjAF0lEdAqDrCidrftXV9lChoBkdAjNJhRhttRGgHTegDaAhHQKg+5cgyM1l1fZQoaAZHQI+poxUNrj5oB03oA2gIR0CoQJJYT0xudX2UKGgGR0CHlemReTmoaAdN6ANoCEdAqEJl8NQTEnV9lChoBkdAjdR6d+Xqq2gHTegDaAhHQKhHZC/oJRh1fZQoaAZHQIpCOIInjQ1oB03oA2gIR0CoS3UIC2c8dX2UKGgGR0CJUCWD6FdtaAdN6ANoCEdAqE0i3y7PIHV9lChoBkdAipHYYixFAmgHTegDaAhHQKhO9UhFEzB1fZQoaAZHQIl4XuG9HtpoB03oA2gIR0CoU/O/L1VYdX2UKGgGR0CKQG9QoCuEaAdN6ANoCEdAqFgTqyGBWnV9lChoBkdAkEOPu9eyA2gHTegDaAhHQKhZyJ7b+Lp1fZQoaAZHQIwZUOAiFCdoB03oA2gIR0CoW5fy5I6KdX2UKGgGR0CPYkwDeTFEaAdN6ANoCEdAqGB/N7jT8nV9lChoBkdAjeYNXYDkl2gHTegDaAhHQKhkpdBSk0t1fZQoaAZHQIx1+tSydFxoB03oA2gIR0CoZmot16mgdX2UKGgGR0COg8MqBmPHaAdN6ANoCEdAqGgrYTTOPnV9lChoBkdAjcEWv8qFy2gHTegDaAhHQKhs/dSEUTN1fZQoaAZHQIwAkuYhMaloB03oA2gIR0CocRTIV/MGdX2UKGgGR0CPd+a0hNdraAdN6ANoCEdAqHLE1XNkfHV9lChoBkdAi8TSqU/wAmgHTegDaAhHQKh0k0Q9RrJ1fZQoaAZHQIrdaQ3gk1NoB03oA2gIR0CoeYbY9Pk8dX2UKGgGR0CHsz0Syt3faAdN6ANoCEdAqH2TL0SRKnV9lChoBkdAjguLtu1nd2gHTegDaAhHQKh/Scy31Bd1fZQoaAZHQI9wj0Fr2xpoB03oA2gIR0CogRvMbFS9dX2UKGgGR0CMMsdBBzFNaAdN6ANoCEdAqIYnr2QGOnV9lChoBkdAim5fYraufWgHTegDaAhHQKiKQ1aW5Yp1fZQoaAZHQIwd25rgwXZoB03oA2gIR0Coi/nAZbY9dX2UKGgGR0CLJnjvuw5eaAdN6ANoCEdAqI3WivgWJ3V9lChoBkdAi9t/x2B8QmgHTegDaAhHQKiSvLns9jh1fZQoaAZHQIumxnlGPPtoB03oA2gIR0Colt4ecQRPdX2UKGgGR0CPXt+0gKWtaAdN6ANoCEdAqJiVNxlxwXV9lChoBkdAirNat1ZDA2gHTegDaAhHQKiaZqREF4d1fZQoaAZHQIppX+VC5VhoB03oA2gIR0Con2XXAdn1dX2UKGgGR0CKg7MhX8wYaAdN6ANoCEdAqKODF0gbInV9lChoBkdAiepkyLyc1GgHTegDaAhHQKilOA+Y+jd1fZQoaAZHQIpw86FM7EJoB03oA2gIR0CopwJZwGW2dX2UKGgGR0CObVw5NoJzaAdN6ANoCEdAqKvo/cFhX3V9lChoBkdAjbmQdsBQvmgHTegDaAhHQKiv7FBppN91fZQoaAZHQI7U7y+YdABoB03oA2gIR0Cosay+QEIPdX2UKGgGR0COP/mhdt2taAdN6ANoCEdAqLNz655JLHV9lChoBkdAib9Cdz4k/2gHTegDaAhHQKi4a0fozN51fZQoaAZHQI9nw7muDBdoB03oA2gIR0CovJNzS1E3dX2UKGgGR0CIj9RIBikPaAdN6ANoCEdAqL5TdSEUTXV9lChoBkdAjKmYlQdjomgHTegDaAhHQKjAL+Kjzqd1fZQoaAZHQImL5IczZYhoB03oA2gIR0CoxQ45Lh73dX2UKGgGR0CJwmEMb3oLaAdN6ANoCEdAqMkvdGiHqXV9lChoBkdAidl+yquKXWgHTegDaAhHQKjK6wu/UON1fZQoaAZHQI0z2dy1eBxoB03oA2gIR0CozLLMcIZ7dX2UKGgGR0CJy4k1Mue0aAdN6ANoCEdAqNG49xIatXV9lChoBkdAjOhG65Gz8mgHTegDaAhHQKjVtQZXMhZ1fZQoaAZHQIuNVJ+UhV5oB03oA2gIR0Co121rqMWHdX2UKGgGR0CNHcqbz9S/aAdN6ANoCEdAqNmUoc7yQXV9lChoBkdAiaNGICU5dWgHTegDaAhHQKjeiDnvDxd1fZQoaAZHQIrxrPOY6XBoB03oA2gIR0Co4pf+jua4dX2UKGgGR0CNIWIyCWeIaAdN6ANoCEdAqOR23hGYr3V9lChoBkdAiFapu/Dcd2gHTegDaAhHQKjmZdCVryl1fZQoaAZHQITnuzt1IRRoB03oA2gIR0Co7EEZiuuBdX2UKGgGR0CHpcf6oESvaAdN6ANoCEdAqPBaVB2OhnV9lChoBkdAhoYWWQfZEmgHTegDaAhHQKjyZjG1hLJ1fZQoaAZHQIkK96AvtdBoB03oA2gIR0Co9Og7xNItdX2UKGgGR0CKNeSyMUAUaAdN6ANoCEdAqPqOi5/b03V9lChoBkdAh+1n7Hhjv2gHTegDaAhHQKj/W5PuXu51fZQoaAZHQIf3ZYV6/qRoB03oA2gIR0CpAXlJHy3DdX2UKGgGR0CINrUSZjQRaAdN6ANoCEdAqQNTqv/za3V9lChoBkdAiWZxlHz6J2gHTegDaAhHQKkIY7PIGQl1fZQoaAZHQIqgZ8Sf16FoB03oA2gIR0CpDKCo86mwdX2UKGgGR0CJ9Ud6LOzIaAdN6ANoCEdAqQ6N9Dx9X3V9lChoBkdAi0MKUNayKWgHTegDaAhHQKkQYvWYnfF1fZQoaAZHQIa0l27nPmhoB03oA2gIR0CpFdxLsa86dX2UKGgGR0CEsxhrFfiQaAdN6ANoCEdAqRqzQ9ic5XV9lChoBkdAhtjfjKgZj2gHTegDaAhHQKkcwCGvfTF1fZQoaAZHQIU72L3sXzloB03oA2gIR0CpHtsMI/qxdX2UKGgGR0CJe5ljEvTPaAdN6ANoCEdAqSRas4ku6HV9lChoBkdAhKCBIOH312gHTegDaAhHQKkpmxsVLzx1fZQoaAZHQIU9TS5RTCNoB03oA2gIR0CpK26NVBD5dX2UKGgGR0CHP80HhS9/aAdN6ANoCEdAqS1aqMm4RXV9lChoBkdAi3/YSQHRkWgHTegDaAhHQKkzmTlkpZx1fZQoaAZHQIbZlXLeQ+5oB03oA2gIR0CpO1TQmeDndX2UKGgGR0CH9cGLUCq7aAdN6ANoCEdAqT4LH80k4XV9lChoBkdAi1fw1ivxIGgHTegDaAhHQKlBigQHzH11fZQoaAZHQISW+zlcQiBoB03oA2gIR0CpSLp66asqdX2UKGgGR0CL0t9ORDCxaAdN6ANoCEdAqU6+gJ1JUnV9lChoBkdAjYLQs5GSZGgHTegDaAhHQKlRVQ40dil1fZQoaAZHQIYLzJOnEVFoB03oA2gIR0CpU0zjNpuddX2UKGgGR0CG5lzYEnstaAdN6ANoCEdAqVh6BmPHUHV9lChoBkdAhvwm3F1jiGgHTegDaAhHQKlchhNucc51fZQoaAZHQIhUoJgLJCBoB03oA2gIR0CpXkC3ocJddX2UKGgGR0CI7WUPhAGCaAdN6ANoCEdAqWAF5+pfhXV9lChoBkdAiDcKraM72mgHTegDaAhHQKllAd92HL11fZQoaAZHQIja46bONYNoB03oA2gIR0CpaSdhJAdGdX2UKGgGR0CIcS26TW5IaAdN6ANoCEdAqWrVQIldC3V9lChoBkdAh9EfsE7nxWgHTegDaAhHQKlsrrs0HhV1fZQoaAZHQIfe3UnXumdoB03oA2gIR0CpcbWYfGModX2UKGgGR0CEWefJ3gUDaAdN6ANoCEdAqXX7syBTXXV9lChoBkdAh4nzER8MNWgHTegDaAhHQKl3u2KEWZZ1fZQoaAZHQIL9OU8mrsBoB03oA2gIR0CpeZYk3S8bdX2UKGgGR0CCwR3Gn4wiaAdN6ANoCEdAqX6x5mh/RXV9lChoBkdAhRgZ6t1ZDGgHTegDaAhHQKmC3xYq5LB1fZQoaAZHQIW8gphF3INoB03oA2gIR0CphIw0XP7fdX2UKGgGR0CChX3dsSCfaAdN6ANoCEdAqYZQUg0TDnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.98,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19a8e87020b06633c94bc990b2c335706f265a5645894454fb1da0581ec025e4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6faf4442286cf93f6130852f6ad734ef5a4cccf5b6b95335f0d7e46c23e85d00
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac82439af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac82439b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac82439c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac82439ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fac82439d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fac82439dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac82439e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac82439ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac82439f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac8243c040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac8243c0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac8243c160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac82434660>"}, "verbose": 100, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -3, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674125231302570314, "learning_rate": 0.00073, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM0oZ78t2yi+rcQFPx5CJb4TKxY9JoLbPSG3UL5AIgS+DsiJP00i1zxICRG/364WvSHHkr8dXQE9lxc4P6CxuD2L62c/dqoMvXhf9z7Znps9d3uQv7BwKL2YtMG+z4TcvGIPyD7kDao+deCuPmn2qT7IX0e/JbQTP9Irwz57z86+XclAPQDvGj6n5D++tnApPs5rij+RRwS94CoSv0CgJb3Baoq/vMCnvCrgCD8X2xo9KK9TPyQrFT1MWYs+vCqePDmTj79UExw9sVHRvld2Jb1iD8g+5A2qPnXgrj5p9qk+VFcfvxFA5T56EOA+kF6PvvRcNj3azAU+dM0+vpl33L69fUe/WioTubAPXL5CjAm93T0kPy8ZAzxWikc/WD9wPXiU/L7Pp9A7PXAXP4M8Rj3INmQ//7iOOwPSoL2g8w69Yg/IPuQNqj514K4+afapPlMtdb/wjQs/avXKPuJ0jL4m2Rg9RWUCPr6BQb59oES+jOUfP1ZeXruw2BG/uygMvc56FL/GXVQ731I/PwQmfD3keW4+L0Hau7R8Cz+eNmI9G0rzvjjYI7xq+9C+Ief6vGIPyD7kDao+deCuPmn2qT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACri5Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+pOwAAAAB1TPK/AAAAAKML7T0AAAAAvtT+PwAAAAC45bA9AAAAADpgAEAAAAAA1ToFPAAAAADPyO+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ8clsgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAw2A74AAAAA1zX6vwAAAABrzHO9AAAAAAeh6T8AAAAA1nhwPAAAAAASJfA/AAAAAJAltT0AAAAASVPwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8rG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAf3A4+AAAAAFZV+r8AAAAAP0GPvAAAAAANJfw/AAAAAEztBD4AAAAA+vfcPwAAAABsxpE9AAAAAI0+4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVmNE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXdvEPQAAAABP1/i/AAAAALGQ5T0AAAAAHLP2PwAAAADJm/Y9AAAAANVj4z8AAAAAh+4LvgAAAADeGuK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsRa5Zr57CMAWyUTegDjAF0lEdAqDrCidrftXV9lChoBkdAjNJhRhttRGgHTegDaAhHQKg+5cgyM1l1fZQoaAZHQI+poxUNrj5oB03oA2gIR0CoQJJYT0xudX2UKGgGR0CHlemReTmoaAdN6ANoCEdAqEJl8NQTEnV9lChoBkdAjdR6d+Xqq2gHTegDaAhHQKhHZC/oJRh1fZQoaAZHQIpCOIInjQ1oB03oA2gIR0CoS3UIC2c8dX2UKGgGR0CJUCWD6FdtaAdN6ANoCEdAqE0i3y7PIHV9lChoBkdAipHYYixFAmgHTegDaAhHQKhO9UhFEzB1fZQoaAZHQIl4XuG9HtpoB03oA2gIR0CoU/O/L1VYdX2UKGgGR0CKQG9QoCuEaAdN6ANoCEdAqFgTqyGBWnV9lChoBkdAkEOPu9eyA2gHTegDaAhHQKhZyJ7b+Lp1fZQoaAZHQIwZUOAiFCdoB03oA2gIR0CoW5fy5I6KdX2UKGgGR0CPYkwDeTFEaAdN6ANoCEdAqGB/N7jT8nV9lChoBkdAjeYNXYDkl2gHTegDaAhHQKhkpdBSk0t1fZQoaAZHQIx1+tSydFxoB03oA2gIR0CoZmot16mgdX2UKGgGR0COg8MqBmPHaAdN6ANoCEdAqGgrYTTOPnV9lChoBkdAjcEWv8qFy2gHTegDaAhHQKhs/dSEUTN1fZQoaAZHQIwAkuYhMaloB03oA2gIR0CocRTIV/MGdX2UKGgGR0CPd+a0hNdraAdN6ANoCEdAqHLE1XNkfHV9lChoBkdAi8TSqU/wAmgHTegDaAhHQKh0k0Q9RrJ1fZQoaAZHQIrdaQ3gk1NoB03oA2gIR0CoeYbY9Pk8dX2UKGgGR0CHsz0Syt3faAdN6ANoCEdAqH2TL0SRKnV9lChoBkdAjguLtu1nd2gHTegDaAhHQKh/Scy31Bd1fZQoaAZHQI9wj0Fr2xpoB03oA2gIR0CogRvMbFS9dX2UKGgGR0CMMsdBBzFNaAdN6ANoCEdAqIYnr2QGOnV9lChoBkdAim5fYraufWgHTegDaAhHQKiKQ1aW5Yp1fZQoaAZHQIwd25rgwXZoB03oA2gIR0Coi/nAZbY9dX2UKGgGR0CLJnjvuw5eaAdN6ANoCEdAqI3WivgWJ3V9lChoBkdAi9t/x2B8QmgHTegDaAhHQKiSvLns9jh1fZQoaAZHQIumxnlGPPtoB03oA2gIR0Colt4ecQRPdX2UKGgGR0CPXt+0gKWtaAdN6ANoCEdAqJiVNxlxwXV9lChoBkdAirNat1ZDA2gHTegDaAhHQKiaZqREF4d1fZQoaAZHQIppX+VC5VhoB03oA2gIR0Con2XXAdn1dX2UKGgGR0CKg7MhX8wYaAdN6ANoCEdAqKODF0gbInV9lChoBkdAiepkyLyc1GgHTegDaAhHQKilOA+Y+jd1fZQoaAZHQIpw86FM7EJoB03oA2gIR0CopwJZwGW2dX2UKGgGR0CObVw5NoJzaAdN6ANoCEdAqKvo/cFhX3V9lChoBkdAjbmQdsBQvmgHTegDaAhHQKiv7FBppN91fZQoaAZHQI7U7y+YdABoB03oA2gIR0Cosay+QEIPdX2UKGgGR0COP/mhdt2taAdN6ANoCEdAqLNz655JLHV9lChoBkdAib9Cdz4k/2gHTegDaAhHQKi4a0fozN51fZQoaAZHQI9nw7muDBdoB03oA2gIR0CovJNzS1E3dX2UKGgGR0CIj9RIBikPaAdN6ANoCEdAqL5TdSEUTXV9lChoBkdAjKmYlQdjomgHTegDaAhHQKjAL+Kjzqd1fZQoaAZHQImL5IczZYhoB03oA2gIR0CoxQ45Lh73dX2UKGgGR0CJwmEMb3oLaAdN6ANoCEdAqMkvdGiHqXV9lChoBkdAidl+yquKXWgHTegDaAhHQKjK6wu/UON1fZQoaAZHQI0z2dy1eBxoB03oA2gIR0CozLLMcIZ7dX2UKGgGR0CJy4k1Mue0aAdN6ANoCEdAqNG49xIatXV9lChoBkdAjOhG65Gz8mgHTegDaAhHQKjVtQZXMhZ1fZQoaAZHQIuNVJ+UhV5oB03oA2gIR0Co121rqMWHdX2UKGgGR0CNHcqbz9S/aAdN6ANoCEdAqNmUoc7yQXV9lChoBkdAiaNGICU5dWgHTegDaAhHQKjeiDnvDxd1fZQoaAZHQIrxrPOY6XBoB03oA2gIR0Co4pf+jua4dX2UKGgGR0CNIWIyCWeIaAdN6ANoCEdAqOR23hGYr3V9lChoBkdAiFapu/Dcd2gHTegDaAhHQKjmZdCVryl1fZQoaAZHQITnuzt1IRRoB03oA2gIR0Co7EEZiuuBdX2UKGgGR0CHpcf6oESvaAdN6ANoCEdAqPBaVB2OhnV9lChoBkdAhoYWWQfZEmgHTegDaAhHQKjyZjG1hLJ1fZQoaAZHQIkK96AvtdBoB03oA2gIR0Co9Og7xNItdX2UKGgGR0CKNeSyMUAUaAdN6ANoCEdAqPqOi5/b03V9lChoBkdAh+1n7Hhjv2gHTegDaAhHQKj/W5PuXu51fZQoaAZHQIf3ZYV6/qRoB03oA2gIR0CpAXlJHy3DdX2UKGgGR0CINrUSZjQRaAdN6ANoCEdAqQNTqv/za3V9lChoBkdAiWZxlHz6J2gHTegDaAhHQKkIY7PIGQl1fZQoaAZHQIqgZ8Sf16FoB03oA2gIR0CpDKCo86mwdX2UKGgGR0CJ9Ud6LOzIaAdN6ANoCEdAqQ6N9Dx9X3V9lChoBkdAi0MKUNayKWgHTegDaAhHQKkQYvWYnfF1fZQoaAZHQIa0l27nPmhoB03oA2gIR0CpFdxLsa86dX2UKGgGR0CEsxhrFfiQaAdN6ANoCEdAqRqzQ9ic5XV9lChoBkdAhtjfjKgZj2gHTegDaAhHQKkcwCGvfTF1fZQoaAZHQIU72L3sXzloB03oA2gIR0CpHtsMI/qxdX2UKGgGR0CJe5ljEvTPaAdN6ANoCEdAqSRas4ku6HV9lChoBkdAhKCBIOH312gHTegDaAhHQKkpmxsVLzx1fZQoaAZHQIU9TS5RTCNoB03oA2gIR0CpK26NVBD5dX2UKGgGR0CHP80HhS9/aAdN6ANoCEdAqS1aqMm4RXV9lChoBkdAi3/YSQHRkWgHTegDaAhHQKkzmTlkpZx1fZQoaAZHQIbZlXLeQ+5oB03oA2gIR0CpO1TQmeDndX2UKGgGR0CH9cGLUCq7aAdN6ANoCEdAqT4LH80k4XV9lChoBkdAi1fw1ivxIGgHTegDaAhHQKlBigQHzH11fZQoaAZHQISW+zlcQiBoB03oA2gIR0CpSLp66asqdX2UKGgGR0CL0t9ORDCxaAdN6ANoCEdAqU6+gJ1JUnV9lChoBkdAjYLQs5GSZGgHTegDaAhHQKlRVQ40dil1fZQoaAZHQIYLzJOnEVFoB03oA2gIR0CpU0zjNpuddX2UKGgGR0CG5lzYEnstaAdN6ANoCEdAqVh6BmPHUHV9lChoBkdAhvwm3F1jiGgHTegDaAhHQKlchhNucc51fZQoaAZHQIhUoJgLJCBoB03oA2gIR0CpXkC3ocJddX2UKGgGR0CI7WUPhAGCaAdN6ANoCEdAqWAF5+pfhXV9lChoBkdAiDcKraM72mgHTegDaAhHQKllAd92HL11fZQoaAZHQIja46bONYNoB03oA2gIR0CpaSdhJAdGdX2UKGgGR0CIcS26TW5IaAdN6ANoCEdAqWrVQIldC3V9lChoBkdAh9EfsE7nxWgHTegDaAhHQKlsrrs0HhV1fZQoaAZHQIfe3UnXumdoB03oA2gIR0CpcbWYfGModX2UKGgGR0CEWefJ3gUDaAdN6ANoCEdAqXX7syBTXXV9lChoBkdAh4nzER8MNWgHTegDaAhHQKl3u2KEWZZ1fZQoaAZHQIL9OU8mrsBoB03oA2gIR0CpeZYk3S8bdX2UKGgGR0CCwR3Gn4wiaAdN6ANoCEdAqX6x5mh/RXV9lChoBkdAhRgZ6t1ZDGgHTegDaAhHQKmC3xYq5LB1fZQoaAZHQIW8gphF3INoB03oA2gIR0CphIw0XP7fdX2UKGgGR0CChX3dsSCfaAdN6ANoCEdAqYZQUg0TDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 749.6729054190567, "std_reward": 58.5694665419502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T11:45:55.066187"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0d5d33be87da7530e220c46834cc6f268bbf857f83fcba3adc93b8e2c395d45
3
+ size 2521