File size: 1,462 Bytes
be22e69
26dded3
 
 
fb94e51
26dded3
 
 
 
 
be22e69
 
26dded3
 
be22e69
26dded3
be22e69
26dded3
 
 
 
 
 
 
 
 
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
be22e69
26dded3
 
 
 
 
 
 
 
 
 
 
 
be22e69
26dded3
be22e69
26dded3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: mit
tags:
- generated_from_trainer
base_model: facebook/w2v-bert-2.0
datasets:
- audiofolder
model-index:
- name: wav2vec-bert-2.0-even-pakendorf-0406-1347
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec-bert-2.0-even-pakendorf-0406-1347

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- eval_loss: inf
- eval_wer: 0.9991
- eval_runtime: 59.9347
- eval_samples_per_second: 10.011
- eval_steps_per_second: 1.251
- epoch: 1.3333
- step: 200

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1