File size: 3,725 Bytes
be22e69 5add4a8 cf4b139 26dded3 5add4a8 cf4b139 26dded3 cf4b139 5add4a8 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 5add4a8 be22e69 26dded3 be22e69 61cf1a7 bd62a46 e634abd bd62a46 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 be22e69 26dded3 be22e69 5add4a8 26dded3 be22e69 5add4a8 26dded3 cf4b139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
base_model: facebook/w2v-bert-2.0
language: eve
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
- cer
model-index:
- name: wav2vec-bert-2.0-even-pakendorf
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.5968606805108706
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec-bert-2.0-even-pakendorf-0406-1347
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Cer: 0.2128
- Loss: inf
- Wer: 0.5969
## Model description
How to use:
```python
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
model = AutoModelForCTC.from_pretrained("tbkazakova/wav2vec-bert-2.0-even-pakendorf")
processor = Wav2Vec2BertProcessor.from_pretrained("tbkazakova/wav2vec-bert-2.0-even-pakendorf")
data, sampling_rate = librosa.load('audio.wav')
librosa.resample(data, orig_sr=sampling_rate, target_sr=16000)
logits = model(torch.tensor(processor(data,
sampling_rate=16000).input_features[0]).unsqueeze(0)).logits
pred_ids = torch.argmax(logits, dim=-1)[0]
print(processor.decode(pred_ids))
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:------:|:----:|:------:|:---------------:|:------:|
| 4.5767 | 0.5051 | 200 | 0.4932 | inf | 0.9973 |
| 1.8775 | 1.0101 | 400 | 0.3211 | inf | 0.8494 |
| 1.6006 | 1.5152 | 600 | 0.3017 | inf | 0.8040 |
| 1.4476 | 2.0202 | 800 | 0.2896 | inf | 0.7534 |
| 1.2213 | 2.5253 | 1000 | 0.2610 | inf | 0.7080 |
| 1.1485 | 3.0303 | 1200 | 0.2684 | inf | 0.6800 |
| 0.9554 | 3.5354 | 1400 | 0.2459 | inf | 0.6732 |
| 0.9379 | 4.0404 | 1600 | 0.2275 | inf | 0.6251 |
| 0.7644 | 4.5455 | 1800 | 0.2235 | inf | 0.6224 |
| 0.7891 | 5.0505 | 2000 | 0.2180 | inf | 0.6053 |
| 0.633 | 5.5556 | 2200 | 0.2130 | inf | 0.5996 |
| 0.6197 | 6.0606 | 2400 | 0.2126 | inf | 0.6032 |
| 0.5212 | 6.5657 | 2600 | 0.2196 | inf | 0.6019 |
| 0.4881 | 7.0707 | 2800 | 0.2125 | inf | 0.5894 |
| 0.4 | 7.5758 | 3000 | 0.2066 | inf | 0.5852 |
| 0.4008 | 8.0808 | 3200 | 0.2076 | inf | 0.5790 |
| 0.3304 | 8.5859 | 3400 | 0.2096 | inf | 0.5884 |
| 0.3446 | 9.0909 | 3600 | 0.2124 | inf | 0.5983 |
| 0.3237 | 9.5960 | 3800 | 0.2128 | inf | 0.5969 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |