File size: 1,958 Bytes
b2e09cc 6e25af1 b2e09cc 8e6a510 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 8e6a510 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 b2e09cc 6e25af1 678e389 6e25af1 b2e09cc 6e25af1 8e6a510 6e25af1 b2e09cc 6e25af1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-135M
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: bias-scorer-smollm2-135m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bias-scorer-smollm2-135m
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4030
- F1: 0.8236
- Accuracy: 0.8297
- Precision: 0.8205
- Recall: 0.8297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
| No log | 0 | 0 | 0.6116 | 0.7504 | 0.7313 | 0.7927 | 0.7313 |
| 0.4266 | 0.5044 | 10000 | 0.4032 | 0.8235 | 0.8297 | 0.8204 | 0.8297 |
| 0.3763 | 1.0088 | 20000 | 0.4030 | 0.8236 | 0.8297 | 0.8205 | 0.8297 |
| 0.3956 | 1.5132 | 30000 | 0.4030 | 0.8236 | 0.8297 | 0.8205 | 0.8297 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|