--- library_name: transformers license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer metrics: - sacrebleu - rouge model-index: - name: bart-base-finetuned-w-data-augm-4e-5 results: [] --- # bart-base-finetuned-w-data-augm-4e-5 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3874 - Sacrebleu: 89.8161 - Rouge1: 95.6774 - Rouge2: 91.8937 - Rougel: 94.6649 - Rougelsum: 94.6595 - Bertscore Precision: 0.9414 - Bertscore Recall: 0.9376 - Bertscore F1: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.4252514647201465e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:| | 0.1504 | 1.0 | 761 | 0.2797 | 90.9313 | 96.2421 | 92.8783 | 95.4262 | 95.4043 | 0.9496 | 0.9444 | 0.9469 | | 0.0348 | 2.0 | 1522 | 0.2473 | 91.7583 | 96.3865 | 93.2655 | 95.6899 | 95.6811 | 0.9532 | 0.9504 | 0.9517 | | 0.0587 | 3.0 | 2283 | 0.2413 | 91.828 | 96.4392 | 93.4124 | 95.7079 | 95.6976 | 0.9517 | 0.9508 | 0.9512 | | 0.0269 | 4.0 | 3044 | 0.2588 | 91.9835 | 96.578 | 93.6221 | 95.8992 | 95.8798 | 0.9524 | 0.9527 | 0.9525 | | 0.0439 | 5.0 | 3805 | 0.2678 | 92.1033 | 96.6815 | 93.6391 | 95.9677 | 95.9469 | 0.9544 | 0.9536 | 0.954 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1