marinkaz commited on
Commit
9944c52
1 Parent(s): 7e115d6

Update readme

Browse files
Files changed (1) hide show
  1. README.md +11 -7
README.md CHANGED
@@ -9,13 +9,17 @@ metrics:
9
  tags:
10
  - biology
11
  - chemistry
 
 
 
 
12
  library_name: tdc
13
  license: bsd-2-clause
14
  ---
15
 
16
  ## Dataset description
17
 
18
- As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protection layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in development of drugs for central nervous system.
19
 
20
  ## Task description
21
 
@@ -25,10 +29,10 @@ Binary classification. Given a drug SMILES string, predict the activity of BBB.
25
 
26
  Total: 1,975 drugs
27
 
28
- ## Dataset split:
29
- Random split on 70% training, 10% validation, and 20% testing
30
- To load the dataset in TDC, type
31
 
 
32
 
33
  ```python
34
  from tdc.single_pred import ADME
@@ -46,6 +50,6 @@ dp_model = tdc_hf_herg.load_deeppurpose('./data')
46
  tdc_hf.predict_deeppurpose(dp_model, ['YOUR SMILES STRING'])
47
  ```
48
 
49
- ## References:
50
-
51
- [1] Martins, Ines Filipa, et al. “A Bayesian approach to in silico blood-brain barrier penetration modeling.” Journal of chemical information and modeling 52.6 (2012): 1686-1697.
 
9
  tags:
10
  - biology
11
  - chemistry
12
+ - therapeutic science
13
+ - drug design
14
+ - drug development
15
+ - therapeutics
16
  library_name: tdc
17
  license: bsd-2-clause
18
  ---
19
 
20
  ## Dataset description
21
 
22
+ As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protective layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in developing drugs for the central nervous system.
23
 
24
  ## Task description
25
 
 
29
 
30
  Total: 1,975 drugs
31
 
32
+ ## Dataset split
33
+ Random split with 70% training, 10% validation, and 20% testing
 
34
 
35
+ To load the dataset in TDC, type
36
 
37
  ```python
38
  from tdc.single_pred import ADME
 
50
  tdc_hf.predict_deeppurpose(dp_model, ['YOUR SMILES STRING'])
51
  ```
52
 
53
+ ## References
54
+ * Dataset entry in Therapeutics Data Commons, https://tdcommons.ai/single_pred_tasks/adme/#bbb-blood-brain-barrier-martins-et-al
55
+ * Martins, Ines Filipa, et al. “A Bayesian approach to in silico blood-brain barrier penetration modeling.” Journal of chemical information and modeling 52.6 (2012): 1686-1697.