avelezarce commited on
Commit
a6fe252
1 Parent(s): 3c7f880

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -0
README.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ metrics:
5
+ - accuracy
6
+ - AUC ROC
7
+ - precision
8
+ - recall
9
+ tags:
10
+ - biology
11
+ - chemistry
12
+ - therapeutic science
13
+ - drug design
14
+ - drug development
15
+ - therapeutics
16
+ library_name: tdc
17
+ license: bsd-2-clause
18
+ ---
19
+ The TDC Transformers API is still under development. You may download scVI pre-trained weights and hyperparameters from the files included.
20
+
21
+ ## Model description
22
+ Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks.
23
+ To load the pre-trained model, use the Files and Versions tab files.
24
+
25
+ ## References
26
+ * Lopez, R., Regier, J., Cole, M., Jordan, M. I., & Yosef, N. (2018). Deep Generative Modeling for Single-cell Transcriptomics. Nature Methods, 15, 1053-1058.
27
+ * Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C. A., Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E., Talavera-López, C., ... Yosef, N. (2021). scvi-tools: a library for deep probabilistic analysis of single-cell omics data. bioRxiv.