avelezarce
commited on
Commit
•
a6fe252
1
Parent(s):
3c7f880
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- AUC ROC
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
tags:
|
10 |
+
- biology
|
11 |
+
- chemistry
|
12 |
+
- therapeutic science
|
13 |
+
- drug design
|
14 |
+
- drug development
|
15 |
+
- therapeutics
|
16 |
+
library_name: tdc
|
17 |
+
license: bsd-2-clause
|
18 |
+
---
|
19 |
+
The TDC Transformers API is still under development. You may download scVI pre-trained weights and hyperparameters from the files included.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks.
|
23 |
+
To load the pre-trained model, use the Files and Versions tab files.
|
24 |
+
|
25 |
+
## References
|
26 |
+
* Lopez, R., Regier, J., Cole, M., Jordan, M. I., & Yosef, N. (2018). Deep Generative Modeling for Single-cell Transcriptomics. Nature Methods, 15, 1053-1058.
|
27 |
+
* Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C. A., Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E., Talavera-López, C., ... Yosef, N. (2021). scvi-tools: a library for deep probabilistic analysis of single-cell omics data. bioRxiv.
|