File size: 3,464 Bytes
7054874
 
2595b31
 
 
 
 
 
 
7054874
2595b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
language:
  - ko
library_name: transformers
pipeline_tag: automatic-speech-recognition
tags:
  - speech
  - audio
---

# hubert-base-korean

## Model Details

Hubert(Hidden-Unit BERT)๋Š” Facebook์—์„œ ์ œ์•ˆํ•œ Speech Representation Learning ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
Hubert๋Š” ๊ธฐ์กด์˜ ์Œ์„ฑ ์ธ์‹ ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ, ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ raw waveform์—์„œ ๋ฐ”๋กœ ํ•™์Šตํ•˜๋Š” self-supervised learning ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ด ์—ฐ๊ตฌ๋Š” ๊ตฌ๊ธ€์˜ TPU Research Cloud(TRC)๋ฅผ ํ†ตํ•ด ์ง€์›๋ฐ›์€ Cloud TPU๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

### Model Description

<table>
   <tr>
      <td colspan="2"></td>
      <td>Base</td>
      <td>Large</td>
   </tr>
   <tr>
      <td rowspan="3">CNN Encoder</td>
      <td>strides</td>
      <td colspan="2">5, 2, 2, 2, 2, 2, 2</td>
   </tr>
   <tr>
      <td>kernel width</td>
      <td colspan="2">10, 3, 3, 3, 3, 2, 2</td>
   </tr>
   <tr>
      <td>channel</td>
      <td colspan="2">512</td>
   </tr>
   <tr>
      <td rowspan="4">Transformer Encoder</td>
      <td>Layer</td>
      <td>12</td>
      <td>24</td>
   </tr>
   <tr>
      <td>embedding dim</td>
      <td>768</td>
      <td>1024</td>
   </tr>
   <tr>
      <td>inner FFN dim</td>
      <td>3072</td>
      <td>4096</td>
   </tr>
   <tr>
      <td>attention heads</td>
      <td>8</td>
      <td>16</td>
   </tr>
   <tr>
      <td>Projection</td>
      <td>dim</td>
      <td>256</td>
      <td>768</td>
   </tr>
   <tr>
      <td colspan="2">Params</td>
      <td>95M</td>
      <td>317M </td>
   </tr>
</table>

## How to Get Started with the Model

### Pytorch

```py
import torch
from transformers import HubertModel

model = HubertModel.from_pretrained("team-lucid/hubert-base-korean")

wav = torch.ones(1, 16000)
outputs = model(wav)
print(f"Input:   {wav.shape}")  # [1, 16000]
print(f"Output:  {outputs.last_hidden_state.shape}")  # [1, 49, 768]
```

### JAX/Flax

```py
import jax.numpy as jnp
from transformers import FlaxAutoModel

model = FlaxAutoModel.from_pretrained("team-lucid/hubert-base-korean", trust_remote_code=True)

wav = jnp.ones((1, 16000))
outputs = model(wav)
print(f"Input:   {wav.shape}")  # [1, 16000]
print(f"Output:  {outputs.last_hidden_state.shape}")  # [1, 49, 768]
```

## Training Details

### Training Data

ํ•ด๋‹น ๋ชจ๋ธ์€ ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์ง€๋Šฅ์ •๋ณด์‚ฌํšŒ์ง„ํฅ์›์˜ ์ง€์›์„ ๋ฐ›์•„
๊ตฌ์ถ•๋œ [์ž์œ ๋Œ€ํ™” ์Œ์„ฑ(์ผ๋ฐ˜๋‚จ์—ฌ)](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=109), [๋‹คํ™”์ž ์Œ์„ฑํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=542), [๋ฐฉ์†ก ์ฝ˜ํ…์ธ  ๋Œ€ํ™”์ฒด ์Œ์„ฑ์ธ์‹ ๋ฐ์ดํ„ฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=463)
์—์„œ ์•ฝ 4,000์‹œ๊ฐ„์„ ์ถ”์ถœํ•ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

### Training Procedure

[์› ๋…ผ๋ฌธ](https://arxiv.org/pdf/2106.07447.pdf)๊ณผ ๋™์ผํ•˜๊ฒŒ MFCC ๊ธฐ๋ฐ˜์œผ๋กœ Base ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ๋‹ค์Œ, 500 cluster๋กœ k-means๋ฅผ ์ˆ˜ํ–‰ํ•ด ๋‹ค์‹œ Base์™€
Large ๋ชจ๋ธ์„ ํ•™์Šตํ–ˆ์Šต๋‹ˆ๋‹ค.

#### Training Hyperparameters

| Hyperparameter      | Base    |   Large |
|:--------------------|---------|--------:|
| Warmup Steps        | 32,000  |  32,000 |
| Learning Rates      | 5e-4    |  1.5e-3 |
| Batch Size          | 128     |     128 |
| Weight Decay        | 0.01    |    0.01 |
| Max Steps           | 400,000 | 400,000 |
| Learning Rate Decay | 0.1     |     0.1 |
| \\(Adam\beta_1\\)   | 0.9     |     0.9 |
| \\(Adam\beta_2\\)   | 0.99    |    0.99 |