File size: 1,527 Bytes
a7cee1f ff549fc 495b32e ff549fc 495b32e a7cee1f ff549fc a7cee1f 495b32e ff549fc 495b32e ff549fc 495b32e ff549fc 495b32e ff549fc 495b32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language:
- cy
- en
datasets:
- techiaith/banc-trawsgrifiadau-bangor
- techiaith/commonvoice_16_1_en_cy
metrics:
- wer
tags:
- automatic-speech-recognition
- speech
license: apache-2.0
pipeline_tag: automatic-speech-recognition
---
# wav2vec2-xlsr-ft-cy-en
An acoustic encoder model for Welsh and English speech recognition, fine-tuned from
[facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) using transcribed
spontaneous speech from
[techiaith/banc-trawsgrifiadau-bangor (v24.01)](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor/tree/24.01)
as well as Welsh and English speech data derived from version 16.1 the Common Voice datasets [techiaith/commonvoice_16_1_en_cy](https://huggingface.co/datasets/techiaith/commonvoice_16_1_en_cy)
## Usage
The wav2vec2-xlsr-ft-cy-en model can be used directly as follows:
```python
import torch
import torchaudio
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en")
model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en")
audio, rate = librosa.load(audio_file, sr=16000)
inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
# greedy decoding
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
```
|