--- language: - cy - en datasets: - techiaith/banc-trawsgrifiadau-bangor - techiaith/commonvoice_16_1_en_cy metrics: - wer tags: - automatic-speech-recognition - speech license: apache-2.0 pipeline_tag: automatic-speech-recognition --- # wav2vec2-xlsr-ft-cy-en An acoustic encoder model for Welsh and English speech recognition, fine-tuned from [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) using transcribed spontaneous speech from [techiaith/banc-trawsgrifiadau-bangor (v24.01)](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor/tree/24.01) as well as Welsh and English speech data derived from version 16.1 the Common Voice datasets [techiaith/commonvoice_16_1_en_cy](https://huggingface.co/datasets/techiaith/commonvoice_16_1_en_cy) ## Usage The wav2vec2-xlsr-ft-cy-en model can be used directly as follows: ```python import torch import torchaudio import librosa from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en") model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en") audio, rate = librosa.load(audio_file, sr=16000) inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits # greedy decoding predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) ```