--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-fine_tune results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8781512605042017 --- # swin-tiny-patch4-window7-224-fine_tune This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5958 - Accuracy: 0.8782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.175 | 0.96 | 16 | 4.7967 | 0.1345 | | 4.1158 | 1.97 | 33 | 2.9977 | 0.3824 | | 2.0676 | 2.99 | 50 | 1.5415 | 0.6807 | | 1.4395 | 4.0 | 67 | 0.9951 | 0.8151 | | 0.9396 | 4.96 | 83 | 0.8235 | 0.8277 | | 0.7456 | 5.97 | 100 | 0.7195 | 0.8361 | | 0.666 | 6.99 | 117 | 0.6406 | 0.8613 | | 0.5893 | 8.0 | 134 | 0.6045 | 0.8739 | | 0.4704 | 8.96 | 150 | 0.6016 | 0.8655 | | 0.4475 | 9.97 | 167 | 0.5958 | 0.8782 | | 0.3937 | 10.99 | 184 | 0.5856 | 0.8782 | | 0.3327 | 12.0 | 201 | 0.5761 | 0.8782 | | 0.3277 | 12.96 | 217 | 0.5758 | 0.8782 | | 0.2928 | 13.97 | 234 | 0.5754 | 0.8739 | | 0.2545 | 14.99 | 251 | 0.5711 | 0.8739 | | 0.2657 | 16.0 | 268 | 0.5851 | 0.8739 | | 0.2457 | 16.96 | 284 | 0.5805 | 0.8655 | | 0.2359 | 17.97 | 301 | 0.5762 | 0.8697 | | 0.2849 | 18.99 | 318 | 0.5792 | 0.8739 | | 0.223 | 19.1 | 320 | 0.5792 | 0.8739 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1